Jinxing Shen , Zhangge She , Xuefeng Xu , Wanting Sun , Guangyuan Chen
{"title":"回填用粗骨料和地铁盾构土控制低强度材料的微观结构和力学性能","authors":"Jinxing Shen , Zhangge She , Xuefeng Xu , Wanting Sun , Guangyuan Chen","doi":"10.1016/j.mtsust.2025.101162","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a sustainable approach is proposed for reusing metro shield spoil (MSS) by the incorporation of with demolition and renovation waste (DRW) to produce controlled low-strength material (CLSM) that complies with established engineering standards. With an orthogonal experimental design, the effects of various DRW content on the workability and mechanical properties of CLSM are systematically investigated. The findings demonstrate that the inclusion of DRW can remarkably enhance the particle distribution, leading to improvements in flowability and compressive strength. Particularly, the flowability of mixture can be increased from 155 mm to 230 mm, and the 28-day compressive strength reaches 1.81 MPa. Microstructure observation reveals that the introduction of DRW can bring about the change of pore structure, resulting in a more refined and optimized matrix. Additionally, a higher presence of calcium-silicate-hydrate (C–S–H) gel and ettringite can be detected, which is attributed to the sulfate content in DRW. This sulfate-induced formation leads to an increase in strength, further validating the suitability of DRW-modified MSS as a promising, eco-friendly solution to produce CLSM. This work provides the potential of this innovative material as a viable, sustainable construction solution to address both waste recycling and performance optimization in civil engineering applications.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"31 ","pages":"Article 101162"},"PeriodicalIF":7.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of controlled low-strength materials with recycled coarse aggregate and metro shield spoil for backfill applications\",\"authors\":\"Jinxing Shen , Zhangge She , Xuefeng Xu , Wanting Sun , Guangyuan Chen\",\"doi\":\"10.1016/j.mtsust.2025.101162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a sustainable approach is proposed for reusing metro shield spoil (MSS) by the incorporation of with demolition and renovation waste (DRW) to produce controlled low-strength material (CLSM) that complies with established engineering standards. With an orthogonal experimental design, the effects of various DRW content on the workability and mechanical properties of CLSM are systematically investigated. The findings demonstrate that the inclusion of DRW can remarkably enhance the particle distribution, leading to improvements in flowability and compressive strength. Particularly, the flowability of mixture can be increased from 155 mm to 230 mm, and the 28-day compressive strength reaches 1.81 MPa. Microstructure observation reveals that the introduction of DRW can bring about the change of pore structure, resulting in a more refined and optimized matrix. Additionally, a higher presence of calcium-silicate-hydrate (C–S–H) gel and ettringite can be detected, which is attributed to the sulfate content in DRW. This sulfate-induced formation leads to an increase in strength, further validating the suitability of DRW-modified MSS as a promising, eco-friendly solution to produce CLSM. This work provides the potential of this innovative material as a viable, sustainable construction solution to address both waste recycling and performance optimization in civil engineering applications.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"31 \",\"pages\":\"Article 101162\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725000910\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000910","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Microstructure and mechanical properties of controlled low-strength materials with recycled coarse aggregate and metro shield spoil for backfill applications
In this study, a sustainable approach is proposed for reusing metro shield spoil (MSS) by the incorporation of with demolition and renovation waste (DRW) to produce controlled low-strength material (CLSM) that complies with established engineering standards. With an orthogonal experimental design, the effects of various DRW content on the workability and mechanical properties of CLSM are systematically investigated. The findings demonstrate that the inclusion of DRW can remarkably enhance the particle distribution, leading to improvements in flowability and compressive strength. Particularly, the flowability of mixture can be increased from 155 mm to 230 mm, and the 28-day compressive strength reaches 1.81 MPa. Microstructure observation reveals that the introduction of DRW can bring about the change of pore structure, resulting in a more refined and optimized matrix. Additionally, a higher presence of calcium-silicate-hydrate (C–S–H) gel and ettringite can be detected, which is attributed to the sulfate content in DRW. This sulfate-induced formation leads to an increase in strength, further validating the suitability of DRW-modified MSS as a promising, eco-friendly solution to produce CLSM. This work provides the potential of this innovative material as a viable, sustainable construction solution to address both waste recycling and performance optimization in civil engineering applications.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.