混合弱奇异核Fredholm积分方程组的一种有效多投影方法:一种超收敛方法

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Krishna Murari Malav , Kapil Kant , Joydip Dhar , Samiran Chakraborty
{"title":"混合弱奇异核Fredholm积分方程组的一种有效多投影方法:一种超收敛方法","authors":"Krishna Murari Malav ,&nbsp;Kapil Kant ,&nbsp;Joydip Dhar ,&nbsp;Samiran Chakraborty","doi":"10.1016/j.apnum.2025.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we develop the multi-Galerkin and iterated multi-Galerkin methods to solve systems of second-kind linear Fredholm integral equations (FIEs) with smooth and mixed weakly singular kernels. First, we develop the mathematical formulation of the multi-Galerkin and iterated multi-Galerkin methods using piecewise polynomial approximations to solve such systems and obtain superconvergence results. These methods transform the linear system of FIEs into corresponding matrix equations. We derive error estimates and obtain the convergence analysis. We prove that the convergence rates for the multi-Galerkin method are <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> for smooth kernels and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>r</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span> for mixed weakly singular kernels, where <em>r</em> denote the degree of the piecewise polynomials, <em>h</em> is the norm of partitions and <span><math><mi>α</mi><mo>=</mo><munder><mi>max</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></munder><mo>⁡</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>. Moreover, we establish that the iterated multi-Galerkin method achieves improved convergence rates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> for smooth kernels and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for mixed weakly singular kernels. Hence, the results show that the iterated multi-Galerkin method improves the multi-Galerkin method. Finally, the theoretical results are validated through the numerical examples.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"217 ","pages":"Pages 172-189"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient multi projection methods for systems of Fredholm integral equations with mixed weakly singular kernels: A superconvergence approach\",\"authors\":\"Krishna Murari Malav ,&nbsp;Kapil Kant ,&nbsp;Joydip Dhar ,&nbsp;Samiran Chakraborty\",\"doi\":\"10.1016/j.apnum.2025.06.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we develop the multi-Galerkin and iterated multi-Galerkin methods to solve systems of second-kind linear Fredholm integral equations (FIEs) with smooth and mixed weakly singular kernels. First, we develop the mathematical formulation of the multi-Galerkin and iterated multi-Galerkin methods using piecewise polynomial approximations to solve such systems and obtain superconvergence results. These methods transform the linear system of FIEs into corresponding matrix equations. We derive error estimates and obtain the convergence analysis. We prove that the convergence rates for the multi-Galerkin method are <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>3</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> for smooth kernels and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>r</mi><mo>−</mo><mi>α</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></math></span> for mixed weakly singular kernels, where <em>r</em> denote the degree of the piecewise polynomials, <em>h</em> is the norm of partitions and <span><math><mi>α</mi><mo>=</mo><munder><mi>max</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></munder><mo>⁡</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span>. Moreover, we establish that the iterated multi-Galerkin method achieves improved convergence rates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>4</mn><mi>r</mi></mrow></msup><mo>)</mo></math></span> for smooth kernels and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow></msup><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>h</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> for mixed weakly singular kernels. Hence, the results show that the iterated multi-Galerkin method improves the multi-Galerkin method. Finally, the theoretical results are validated through the numerical examples.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"217 \",\"pages\":\"Pages 172-189\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425001230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用多重galerkin和迭代多重galerkin方法,求解了一类具有光滑和混合弱奇异核的第二类线性Fredholm积分方程组。首先,我们利用分段多项式逼近建立了多重galerkin和迭代多重galerkin方法的数学表达式,并得到了超收敛结果。这些方法将FIEs的线性方程组转化为相应的矩阵方程。我们推导了误差估计,并得到了收敛性分析。证明了多重伽辽金方法对于光滑核的收敛速度为O(h3r),对于混合弱奇异核的收敛速度为O(h1+r−αlog (h)),其中r表示分段多项式的阶数,h表示分区范数,α=maxi,j∈αij。此外,我们还证明了迭代多重伽辽金方法对于光滑核的收敛速度为O(h4r),对于混合弱奇异核的收敛速度为O(hr+2(1−α)(log (h)2))。结果表明,迭代多重伽辽金方法是对多重伽辽金方法的改进。最后通过数值算例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient multi projection methods for systems of Fredholm integral equations with mixed weakly singular kernels: A superconvergence approach
In this article, we develop the multi-Galerkin and iterated multi-Galerkin methods to solve systems of second-kind linear Fredholm integral equations (FIEs) with smooth and mixed weakly singular kernels. First, we develop the mathematical formulation of the multi-Galerkin and iterated multi-Galerkin methods using piecewise polynomial approximations to solve such systems and obtain superconvergence results. These methods transform the linear system of FIEs into corresponding matrix equations. We derive error estimates and obtain the convergence analysis. We prove that the convergence rates for the multi-Galerkin method are O(h3r) for smooth kernels and O(h1+rαlogh) for mixed weakly singular kernels, where r denote the degree of the piecewise polynomials, h is the norm of partitions and α=maxi,jαij. Moreover, we establish that the iterated multi-Galerkin method achieves improved convergence rates of O(h4r) for smooth kernels and O(hr+2(1α)(logh)2) for mixed weakly singular kernels. Hence, the results show that the iterated multi-Galerkin method improves the multi-Galerkin method. Finally, the theoretical results are validated through the numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信