{"title":"基于深度学习的医学图像中结直肠癌检测:数据集、方法和未来方向的综合分析","authors":"Burak Gülmez","doi":"10.1016/j.clinimag.2025.110542","DOIUrl":null,"url":null,"abstract":"<div><div>This comprehensive review examines the current state and evolution of artificial intelligence applications in colorectal cancer detection through medical imaging from 2019 to 2025. The study presents a quantitative analysis of 110 high-quality publications and 9 publicly accessible medical image datasets used for training and validation. Various convolutional neural network architectures—including ResNet (40 implementations), VGG (18 implementations), and emerging transformer-based models (12 implementations)—for classification, object detection, and segmentation tasks are systematically categorized and evaluated. The investigation encompasses hyperparameter optimization techniques utilized to enhance model performance, with particular focus on genetic algorithms and particle swarm optimization approaches. The role of explainable AI methods in medical diagnosis interpretation is analyzed through visualization techniques such as Grad-CAM and SHAP. Technical limitations, including dataset scarcity, computational constraints, and standardization challenges, are identified through trend analysis. Research gaps in current methodologies are highlighted through comparative assessment of performance metrics across different architectural implementations. Potential future research directions, including multimodal learning and federated learning approaches, are proposed based on publication trend analysis. This review serves as a comprehensive reference for researchers in medical image analysis and clinical practitioners implementing AI-based colorectal cancer detection systems.</div></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"125 ","pages":"Article 110542"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning based colorectal cancer detection in medical images: A comprehensive analysis of datasets, methods, and future directions\",\"authors\":\"Burak Gülmez\",\"doi\":\"10.1016/j.clinimag.2025.110542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This comprehensive review examines the current state and evolution of artificial intelligence applications in colorectal cancer detection through medical imaging from 2019 to 2025. The study presents a quantitative analysis of 110 high-quality publications and 9 publicly accessible medical image datasets used for training and validation. Various convolutional neural network architectures—including ResNet (40 implementations), VGG (18 implementations), and emerging transformer-based models (12 implementations)—for classification, object detection, and segmentation tasks are systematically categorized and evaluated. The investigation encompasses hyperparameter optimization techniques utilized to enhance model performance, with particular focus on genetic algorithms and particle swarm optimization approaches. The role of explainable AI methods in medical diagnosis interpretation is analyzed through visualization techniques such as Grad-CAM and SHAP. Technical limitations, including dataset scarcity, computational constraints, and standardization challenges, are identified through trend analysis. Research gaps in current methodologies are highlighted through comparative assessment of performance metrics across different architectural implementations. Potential future research directions, including multimodal learning and federated learning approaches, are proposed based on publication trend analysis. This review serves as a comprehensive reference for researchers in medical image analysis and clinical practitioners implementing AI-based colorectal cancer detection systems.</div></div>\",\"PeriodicalId\":50680,\"journal\":{\"name\":\"Clinical Imaging\",\"volume\":\"125 \",\"pages\":\"Article 110542\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0899707125001421\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707125001421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Deep learning based colorectal cancer detection in medical images: A comprehensive analysis of datasets, methods, and future directions
This comprehensive review examines the current state and evolution of artificial intelligence applications in colorectal cancer detection through medical imaging from 2019 to 2025. The study presents a quantitative analysis of 110 high-quality publications and 9 publicly accessible medical image datasets used for training and validation. Various convolutional neural network architectures—including ResNet (40 implementations), VGG (18 implementations), and emerging transformer-based models (12 implementations)—for classification, object detection, and segmentation tasks are systematically categorized and evaluated. The investigation encompasses hyperparameter optimization techniques utilized to enhance model performance, with particular focus on genetic algorithms and particle swarm optimization approaches. The role of explainable AI methods in medical diagnosis interpretation is analyzed through visualization techniques such as Grad-CAM and SHAP. Technical limitations, including dataset scarcity, computational constraints, and standardization challenges, are identified through trend analysis. Research gaps in current methodologies are highlighted through comparative assessment of performance metrics across different architectural implementations. Potential future research directions, including multimodal learning and federated learning approaches, are proposed based on publication trend analysis. This review serves as a comprehensive reference for researchers in medical image analysis and clinical practitioners implementing AI-based colorectal cancer detection systems.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology