基于Boussinesq近似和熔合温度的多孔u形储能系统中纳米封装PCMs的热管理

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
S.A. Ohid , M.K. Nayak , Rifaqat Ali , Mohamed Kallel , S. Nazari
{"title":"基于Boussinesq近似和熔合温度的多孔u形储能系统中纳米封装PCMs的热管理","authors":"S.A. Ohid ,&nbsp;M.K. Nayak ,&nbsp;Rifaqat Ali ,&nbsp;Mohamed Kallel ,&nbsp;S. Nazari","doi":"10.1016/j.csite.2025.106520","DOIUrl":null,"url":null,"abstract":"<div><div>Many devices require precise temperature control within a constrained temperature range because they are susceptible to irregular temperature increases or gradients. Indeed, because different building materials have differing coefficients of thermal expansion, a device's sensitive structures may experience internal thermal stress due to temperature variations. Consequently, nano-encapsulated PCMs show promise in terms of their ability to ameliorate working fluid performance while maintaining the devices at a certain cooling temperature. The present article, therefore, numerically investigates the behavior of NC and entropy generation of NEPCM suspension inside a U-shaped thermal energy storage system with a wavy-shaped heater. Modeled governing equations were solved numerically by FEM. The behavior of heat capacity ratios, temperature distributions, fluid structure, entropy generation, and heat transfer efficiency were explored via graphical presentations. It is noticed that augmentation of horizontal displacement of the wavy heater <span><math><mrow><mo>(</mo><mrow><mi>H</mi><mi>D</mi></mrow><mo>)</mo></mrow></math></span>, Rayleigh number <span><math><mrow><mo>(</mo><mrow><mi>R</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>, porosity of the medium <span><math><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span>, and Darcy number <span><math><mrow><mo>(</mo><mrow><mi>D</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span> upsurges the stream function, isotherms, and heat capacity ratio, velocities, and entropy generation. It is also visualized that <span><math><mrow><mi>N</mi><msub><mi>u</mi><mrow><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub></mrow></math></span> increases by 85.72 %, 25.51 %, 49.16 %, 0.75 %, 0.49 % respectively due to the enhancement of <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> from <span><math><mrow><msup><mn>10</mn><mn>5</mn></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><msup><mn>10</mn><mn>6</mn></msup></mrow></math></span>, <span><math><mrow><mi>ε</mi></mrow></math></span> from 0.1 to 0.9, <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> from <span><math><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, Stefan number from 0.5 to 0.7, fusion temperature from 0.1 to 0.5.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"73 ","pages":"Article 106520"},"PeriodicalIF":6.4000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal management of nano-encapsulated PCMs inside a porous wavy U-shaped energy storage system subject to Boussinesq approximation and fusion temperature\",\"authors\":\"S.A. Ohid ,&nbsp;M.K. Nayak ,&nbsp;Rifaqat Ali ,&nbsp;Mohamed Kallel ,&nbsp;S. Nazari\",\"doi\":\"10.1016/j.csite.2025.106520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many devices require precise temperature control within a constrained temperature range because they are susceptible to irregular temperature increases or gradients. Indeed, because different building materials have differing coefficients of thermal expansion, a device's sensitive structures may experience internal thermal stress due to temperature variations. Consequently, nano-encapsulated PCMs show promise in terms of their ability to ameliorate working fluid performance while maintaining the devices at a certain cooling temperature. The present article, therefore, numerically investigates the behavior of NC and entropy generation of NEPCM suspension inside a U-shaped thermal energy storage system with a wavy-shaped heater. Modeled governing equations were solved numerically by FEM. The behavior of heat capacity ratios, temperature distributions, fluid structure, entropy generation, and heat transfer efficiency were explored via graphical presentations. It is noticed that augmentation of horizontal displacement of the wavy heater <span><math><mrow><mo>(</mo><mrow><mi>H</mi><mi>D</mi></mrow><mo>)</mo></mrow></math></span>, Rayleigh number <span><math><mrow><mo>(</mo><mrow><mi>R</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>, porosity of the medium <span><math><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span>, and Darcy number <span><math><mrow><mo>(</mo><mrow><mi>D</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span> upsurges the stream function, isotherms, and heat capacity ratio, velocities, and entropy generation. It is also visualized that <span><math><mrow><mi>N</mi><msub><mi>u</mi><mrow><mi>a</mi><mi>v</mi><mi>e</mi></mrow></msub></mrow></math></span> increases by 85.72 %, 25.51 %, 49.16 %, 0.75 %, 0.49 % respectively due to the enhancement of <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> from <span><math><mrow><msup><mn>10</mn><mn>5</mn></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><msup><mn>10</mn><mn>6</mn></msup></mrow></math></span>, <span><math><mrow><mi>ε</mi></mrow></math></span> from 0.1 to 0.9, <span><math><mrow><mi>D</mi><mi>a</mi></mrow></math></span> from <span><math><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mtext>to</mtext><mspace></mspace><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, Stefan number from 0.5 to 0.7, fusion temperature from 0.1 to 0.5.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"73 \",\"pages\":\"Article 106520\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X25007804\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25007804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

许多设备需要在有限的温度范围内精确控制温度,因为它们容易受到不规则温度升高或梯度的影响。事实上,由于不同的建筑材料具有不同的热膨胀系数,器件的敏感结构可能由于温度变化而经历内部热应力。因此,纳米封装pcm在改善工作流体性能的同时,将设备保持在一定的冷却温度下,显示出了良好的前景。因此,本文在数值上研究了带有波浪形加热器的u型蓄能系统内NEPCM悬架的NC行为和熵产。采用有限元法对模型控制方程进行数值求解。热容量比、温度分布、流体结构、熵产和传热效率的行为通过图形表示进行了探索。波浪加热器的水平位移(HD)、瑞利数(Ra)、介质孔隙度(ε)和达西数(Da)的增大使流函数、等温线、热容比、速度和熵产增大。结果表明,由于Ra从105提高到106,ε从0.1提高到0.9,Da从10−40提高到10−2,Stefan数从0.5提高到0.7,熔合温度从0.1提高到0.5,Nuave分别提高了85.72%,25.51%,49.16%,0.75%,0.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal management of nano-encapsulated PCMs inside a porous wavy U-shaped energy storage system subject to Boussinesq approximation and fusion temperature
Many devices require precise temperature control within a constrained temperature range because they are susceptible to irregular temperature increases or gradients. Indeed, because different building materials have differing coefficients of thermal expansion, a device's sensitive structures may experience internal thermal stress due to temperature variations. Consequently, nano-encapsulated PCMs show promise in terms of their ability to ameliorate working fluid performance while maintaining the devices at a certain cooling temperature. The present article, therefore, numerically investigates the behavior of NC and entropy generation of NEPCM suspension inside a U-shaped thermal energy storage system with a wavy-shaped heater. Modeled governing equations were solved numerically by FEM. The behavior of heat capacity ratios, temperature distributions, fluid structure, entropy generation, and heat transfer efficiency were explored via graphical presentations. It is noticed that augmentation of horizontal displacement of the wavy heater (HD), Rayleigh number (Ra), porosity of the medium (ε), and Darcy number (Da) upsurges the stream function, isotherms, and heat capacity ratio, velocities, and entropy generation. It is also visualized that Nuave increases by 85.72 %, 25.51 %, 49.16 %, 0.75 %, 0.49 % respectively due to the enhancement of Ra from 105to106, ε from 0.1 to 0.9, Da from 104to102, Stefan number from 0.5 to 0.7, fusion temperature from 0.1 to 0.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信