非线性热粘弹性中的正温度及线性化模型的推导

IF 2.1 1区 数学 Q1 MATHEMATICS
Rufat Badal , Manuel Friedrich , Martin Kružík , Lennart Machill
{"title":"非线性热粘弹性中的正温度及线性化模型的推导","authors":"Rufat Badal ,&nbsp;Manuel Friedrich ,&nbsp;Martin Kružík ,&nbsp;Lennart Machill","doi":"10.1016/j.matpur.2025.103751","DOIUrl":null,"url":null,"abstract":"<div><div>According to the Nernst theorem or, equivalently, the third law of thermodynamics, the absolute zero temperature is not attainable. Starting with an initial positive temperature, we show that there exist solutions to a Kelvin-Voigt model for quasi-static nonlinear thermoviscoelasticity at a finite-strain setting <span><span>[45]</span></span>, obeying an exponential-in-time lower bound on the temperature. Afterwards, we focus on the case of deformations near the identity and temperatures near a critical positive temperature, and we show that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. Our result extends the recent linearization result in <span><span>[4]</span></span>, as it allows the critical temperature to be positive.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"202 ","pages":"Article 103751"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive temperature in nonlinear thermoviscoelasticity and the derivation of linearized models\",\"authors\":\"Rufat Badal ,&nbsp;Manuel Friedrich ,&nbsp;Martin Kružík ,&nbsp;Lennart Machill\",\"doi\":\"10.1016/j.matpur.2025.103751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>According to the Nernst theorem or, equivalently, the third law of thermodynamics, the absolute zero temperature is not attainable. Starting with an initial positive temperature, we show that there exist solutions to a Kelvin-Voigt model for quasi-static nonlinear thermoviscoelasticity at a finite-strain setting <span><span>[45]</span></span>, obeying an exponential-in-time lower bound on the temperature. Afterwards, we focus on the case of deformations near the identity and temperatures near a critical positive temperature, and we show that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. Our result extends the recent linearization result in <span><span>[4]</span></span>, as it allows the critical temperature to be positive.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"202 \",\"pages\":\"Article 103751\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000959\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000959","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据能斯特定理,或者说热力学第三定律,绝对零度是不可能达到的。从初始正温度开始,我们证明了在有限应变设置[45]下准静态非线性热粘弹性Kelvin-Voigt模型存在解,服从温度的指数时间下界。然后,我们重点讨论了在恒等附近的变形和温度接近临界正温度的情况,并证明了非线性系统的弱解在适当意义上收敛于线性化热粘弹性系统的解。我们的结果扩展了[4]中最近的线性化结果,因为它允许临界温度为正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive temperature in nonlinear thermoviscoelasticity and the derivation of linearized models
According to the Nernst theorem or, equivalently, the third law of thermodynamics, the absolute zero temperature is not attainable. Starting with an initial positive temperature, we show that there exist solutions to a Kelvin-Voigt model for quasi-static nonlinear thermoviscoelasticity at a finite-strain setting [45], obeying an exponential-in-time lower bound on the temperature. Afterwards, we focus on the case of deformations near the identity and temperatures near a critical positive temperature, and we show that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. Our result extends the recent linearization result in [4], as it allows the critical temperature to be positive.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信