通过重组多功能嵌合肽纳米载体有效地向免疫细胞传递基因:在免疫治疗中的意义

IF 4.2 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Mahdiyar Dehshiri MSc , Fateme Zarein MSc , Fatemeh Rajabi MSc , Mohammad Reza Javan PhD , Maryam Nikkhah PhD , Fatemeh Rahbarizadeh PhD , Jalil Mehrzad PhD, DVM , Seyed Mohammad Moazzeni PhD , Amir Ali Hamidieh MD , Saman Hosseinkhani PhD
{"title":"通过重组多功能嵌合肽纳米载体有效地向免疫细胞传递基因:在免疫治疗中的意义","authors":"Mahdiyar Dehshiri MSc ,&nbsp;Fateme Zarein MSc ,&nbsp;Fatemeh Rajabi MSc ,&nbsp;Mohammad Reza Javan PhD ,&nbsp;Maryam Nikkhah PhD ,&nbsp;Fatemeh Rahbarizadeh PhD ,&nbsp;Jalil Mehrzad PhD, DVM ,&nbsp;Seyed Mohammad Moazzeni PhD ,&nbsp;Amir Ali Hamidieh MD ,&nbsp;Saman Hosseinkhani PhD","doi":"10.1016/j.nano.2025.102837","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (&gt;98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with &gt;85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"68 ","pages":"Article 102837"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient gene delivery to immune cells via a recombinant multifunctional chimeric peptide nanocarrier: Implications in immunotherapy\",\"authors\":\"Mahdiyar Dehshiri MSc ,&nbsp;Fateme Zarein MSc ,&nbsp;Fatemeh Rajabi MSc ,&nbsp;Mohammad Reza Javan PhD ,&nbsp;Maryam Nikkhah PhD ,&nbsp;Fatemeh Rahbarizadeh PhD ,&nbsp;Jalil Mehrzad PhD, DVM ,&nbsp;Seyed Mohammad Moazzeni PhD ,&nbsp;Amir Ali Hamidieh MD ,&nbsp;Saman Hosseinkhani PhD\",\"doi\":\"10.1016/j.nano.2025.102837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (&gt;98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with &gt;85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"68 \",\"pages\":\"Article 102837\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000383\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

免疫细胞的遗传修饰仍然是免疫治疗的主要挑战。虽然存在病毒和非病毒载体,但非病毒方法的基因转移效率仍然很低。我们提出了一种基于肽的载体(MiRGD),用于基因递送到不同的免疫细胞。通过凝胶阻滞、动态光散射和zeta电位分析表征了MiRGD/质粒复合物的形成。经过在HEK293T细胞中的安全性和效率优化,MiRGD在Jurkat T细胞中实现了69%的嵌合抗原受体(CAR)转染(98%的存活率),在原代人T细胞中实现了28%的转染。树突状细胞转染61%,存活率85%。在体内,MiRGD作为针对SARS-CoV-2的DNA疫苗发挥作用,引发强大的抗体滴度,中和和安全的组织病理学。这些结果证明了MiRGD在免疫细胞工程(T细胞、树突状细胞、巨噬细胞)和疫苗接种方面的有效性和生物相容性,为免疫治疗应用提供了一个成本效益高、无毒的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient gene delivery to immune cells via a recombinant multifunctional chimeric peptide nanocarrier: Implications in immunotherapy

Efficient gene delivery to immune cells via a recombinant multifunctional chimeric peptide nanocarrier: Implications in immunotherapy
Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (>98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with >85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
0.00%
发文量
133
审稿时长
42 days
期刊介绍: The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine. Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信