Mahdiyar Dehshiri MSc , Fateme Zarein MSc , Fatemeh Rajabi MSc , Mohammad Reza Javan PhD , Maryam Nikkhah PhD , Fatemeh Rahbarizadeh PhD , Jalil Mehrzad PhD, DVM , Seyed Mohammad Moazzeni PhD , Amir Ali Hamidieh MD , Saman Hosseinkhani PhD
{"title":"通过重组多功能嵌合肽纳米载体有效地向免疫细胞传递基因:在免疫治疗中的意义","authors":"Mahdiyar Dehshiri MSc , Fateme Zarein MSc , Fatemeh Rajabi MSc , Mohammad Reza Javan PhD , Maryam Nikkhah PhD , Fatemeh Rahbarizadeh PhD , Jalil Mehrzad PhD, DVM , Seyed Mohammad Moazzeni PhD , Amir Ali Hamidieh MD , Saman Hosseinkhani PhD","doi":"10.1016/j.nano.2025.102837","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (>98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with >85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"68 ","pages":"Article 102837"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient gene delivery to immune cells via a recombinant multifunctional chimeric peptide nanocarrier: Implications in immunotherapy\",\"authors\":\"Mahdiyar Dehshiri MSc , Fateme Zarein MSc , Fatemeh Rajabi MSc , Mohammad Reza Javan PhD , Maryam Nikkhah PhD , Fatemeh Rahbarizadeh PhD , Jalil Mehrzad PhD, DVM , Seyed Mohammad Moazzeni PhD , Amir Ali Hamidieh MD , Saman Hosseinkhani PhD\",\"doi\":\"10.1016/j.nano.2025.102837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (>98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with >85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"68 \",\"pages\":\"Article 102837\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000383\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000383","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Efficient gene delivery to immune cells via a recombinant multifunctional chimeric peptide nanocarrier: Implications in immunotherapy
Genetic modification of immune cells remains a major challenge in immunotherapy. While viral and non-viral carriers exist, low gene transfer efficiency persists with non-viral methods. We present a peptide-based carrier (MiRGD) for gene delivery to diverse immune cells. The MiRGD/plasmid complex formation was characterized via gel retardation, dynamic light scattering, and zeta potential analysis. After safety and efficiency optimization in HEK293T cells, MiRGD achieved 69 % chimeric antigen receptor (CAR) transfection in Jurkat T cells (>98 % viability) and 28 % in primary human T cells. Dendritic cells showed 61 % transfection with >85 % viability. In vivo, MiRGD functioned as a DNA vaccine against SARS-CoV-2, eliciting robust antibody titers, neutralization, and safe histopathology. These results demonstrate MiRGD's efficacy and biocompatibility for immune cell engineering (T cells, dendritic cells, macrophages) and vaccination, offering a cost-effective, non-toxic platform for immunotherapy applications.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.