元胞自动机模拟激光扫描和重扫描Al-10Si晶粒和亚晶粒随共晶生长的演变,并进行实验验证

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kai Kang , Lang Yuan , Can Sun , Javier Miranda , André B. Phillion
{"title":"元胞自动机模拟激光扫描和重扫描Al-10Si晶粒和亚晶粒随共晶生长的演变,并进行实验验证","authors":"Kai Kang ,&nbsp;Lang Yuan ,&nbsp;Can Sun ,&nbsp;Javier Miranda ,&nbsp;André B. Phillion","doi":"10.1016/j.matdes.2025.114244","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a three-dimensional Cellular Automaton (3D CA) model incorporating eutectic growth mechanisms to simulate grain and sub-grain structure evolution in an additive manufacturing (AM) scenario, with surface laser rescanning of Al–10Si alloy as a case study. Unlike conventional CA models in AM, this work introduces a eutectic solidification framework within the CA approach, allowing dynamical transitions between dendritic and eutectic growth modes based on local thermal and solute conditions. The CA model integrates finite element analysis (FEA)-derived thermal data, solute redistribution tracking, nucleation behaviors, and growth kinetics under rapid solidification conditions in laser scanning and rescanning. The simulation results predict key microstructural phenomena, including dendritic-to-eutectic transitions, grain refinement resulting from laser rescanning, and the formation of submicron-scale eutectic cellular structures. These findings have been rigorously validated against specimens fabricated via laser scanning AM. Overall, the developed CA model provides a robust predictive tool for understanding and optimizing microstructural evolution in AM processes, offering valuable insights for tailoring processing parameters and alloy compositions to achieve desirable mechanical properties in Al–10Si and other alloy systems.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"256 ","pages":"Article 114244"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular Automaton simulation of grain and sub-grain evolution with eutectic growth in laser scanned and rescanned Al–10Si, with experimental validation\",\"authors\":\"Kai Kang ,&nbsp;Lang Yuan ,&nbsp;Can Sun ,&nbsp;Javier Miranda ,&nbsp;André B. Phillion\",\"doi\":\"10.1016/j.matdes.2025.114244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a three-dimensional Cellular Automaton (3D CA) model incorporating eutectic growth mechanisms to simulate grain and sub-grain structure evolution in an additive manufacturing (AM) scenario, with surface laser rescanning of Al–10Si alloy as a case study. Unlike conventional CA models in AM, this work introduces a eutectic solidification framework within the CA approach, allowing dynamical transitions between dendritic and eutectic growth modes based on local thermal and solute conditions. The CA model integrates finite element analysis (FEA)-derived thermal data, solute redistribution tracking, nucleation behaviors, and growth kinetics under rapid solidification conditions in laser scanning and rescanning. The simulation results predict key microstructural phenomena, including dendritic-to-eutectic transitions, grain refinement resulting from laser rescanning, and the formation of submicron-scale eutectic cellular structures. These findings have been rigorously validated against specimens fabricated via laser scanning AM. Overall, the developed CA model provides a robust predictive tool for understanding and optimizing microstructural evolution in AM processes, offering valuable insights for tailoring processing parameters and alloy compositions to achieve desirable mechanical properties in Al–10Si and other alloy systems.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"256 \",\"pages\":\"Article 114244\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127525006641\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525006641","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个三维元胞自动机(3D CA)模型,结合共晶生长机制来模拟增材制造(AM)场景下的晶粒和亚晶粒结构演变,并以Al-10Si合金表面激光重扫描为例进行了研究。与AM中的传统CA模型不同,这项工作在CA方法中引入了共晶凝固框架,允许基于局部热和溶质条件的枝晶和共晶生长模式之间的动态转换。CA模型集成了激光扫描和重扫描快速凝固条件下的有限元分析(FEA)衍生热数据、溶质再分布跟踪、成核行为和生长动力学。模拟结果预测了关键的微观结构现象,包括枝晶到共晶的转变、激光重扫描导致的晶粒细化以及亚微米尺度共晶细胞结构的形成。这些发现已经通过激光扫描AM制作的标本得到了严格的验证。总的来说,开发的CA模型为理解和优化AM过程中的微观组织演变提供了强大的预测工具,为定制加工参数和合金成分提供了有价值的见解,以实现Al-10Si和其他合金系统的理想机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular Automaton simulation of grain and sub-grain evolution with eutectic growth in laser scanned and rescanned Al–10Si, with experimental validation
This study presents a three-dimensional Cellular Automaton (3D CA) model incorporating eutectic growth mechanisms to simulate grain and sub-grain structure evolution in an additive manufacturing (AM) scenario, with surface laser rescanning of Al–10Si alloy as a case study. Unlike conventional CA models in AM, this work introduces a eutectic solidification framework within the CA approach, allowing dynamical transitions between dendritic and eutectic growth modes based on local thermal and solute conditions. The CA model integrates finite element analysis (FEA)-derived thermal data, solute redistribution tracking, nucleation behaviors, and growth kinetics under rapid solidification conditions in laser scanning and rescanning. The simulation results predict key microstructural phenomena, including dendritic-to-eutectic transitions, grain refinement resulting from laser rescanning, and the formation of submicron-scale eutectic cellular structures. These findings have been rigorously validated against specimens fabricated via laser scanning AM. Overall, the developed CA model provides a robust predictive tool for understanding and optimizing microstructural evolution in AM processes, offering valuable insights for tailoring processing parameters and alloy compositions to achieve desirable mechanical properties in Al–10Si and other alloy systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信