形式语言、自旋系统和准晶体

IF 1.2 3区 数学 Q1 MATHEMATICS
Francesca Fernandes , Matilde Marcolli
{"title":"形式语言、自旋系统和准晶体","authors":"Francesca Fernandes ,&nbsp;Matilde Marcolli","doi":"10.1016/j.geomphys.2025.105568","DOIUrl":null,"url":null,"abstract":"<div><div>We present a categorical formalism for context-free languages with morphisms given by correspondences obtained from rational transductions. We show that D0L-systems are a special case of the correspondences that define morphisms in this category. We construct a functorial mapping to aperiodic spin chains. We then generalize this construction to a class of mildly context sensitive grammars, the multiple-context-free grammars (MCFG), with a similar functorial mapping to spin systems in higher dimensions, with Boltzmann weights describing interacting spins on vertices of hypercubes. We show that a particular motivating example for this general construction is provided by the Korepin completely integrable model on the icosahedral quasicrystal, which we construct as the spin system associated to a multiple-context-free grammar describing the geometry of the Ammann planes quasilattice. We review the main properties of this spin system, including solvability, bulk free energy, and criticality, based on results of Baxter and the known relation to the Zamolodchikov tetrahedron equation, and we show that the latter has a generalization for the Boltzmann weights on hypercubes of the spin systems associated to more general MCFGs in terms of two dual cubulations of the <em>n</em>-simplex. We formulate analogous questions about bulk free energy and criticality for our construction of spin systems.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105568"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal languages, spin systems, and quasicrystals\",\"authors\":\"Francesca Fernandes ,&nbsp;Matilde Marcolli\",\"doi\":\"10.1016/j.geomphys.2025.105568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a categorical formalism for context-free languages with morphisms given by correspondences obtained from rational transductions. We show that D0L-systems are a special case of the correspondences that define morphisms in this category. We construct a functorial mapping to aperiodic spin chains. We then generalize this construction to a class of mildly context sensitive grammars, the multiple-context-free grammars (MCFG), with a similar functorial mapping to spin systems in higher dimensions, with Boltzmann weights describing interacting spins on vertices of hypercubes. We show that a particular motivating example for this general construction is provided by the Korepin completely integrable model on the icosahedral quasicrystal, which we construct as the spin system associated to a multiple-context-free grammar describing the geometry of the Ammann planes quasilattice. We review the main properties of this spin system, including solvability, bulk free energy, and criticality, based on results of Baxter and the known relation to the Zamolodchikov tetrahedron equation, and we show that the latter has a generalization for the Boltzmann weights on hypercubes of the spin systems associated to more general MCFGs in terms of two dual cubulations of the <em>n</em>-simplex. We formulate analogous questions about bulk free energy and criticality for our construction of spin systems.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"216 \",\"pages\":\"Article 105568\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001524\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001524","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个由理性转导得到的对应给出的语态的无上下文语言的直言形式体系。我们证明了dl系统是定义这个范畴中态射的对应的一个特例。构造了非周期自旋链的函数映射。然后,我们将这种结构推广到一类轻度上下文敏感的语法,多重上下文无关语法(MCFG),具有类似于高维自旋系统的功能映射,玻尔兹曼权重描述超立方体顶点上的相互作用自旋。我们证明了这种一般构造的一个特殊的激励例子是由二十面体准晶体上的Korepin完全可积模型提供的,我们将其构建为与描述Ammann平面准晶格几何形状的多重上下文无关语法相关的自旋系统。基于Baxter的结果和已知的与Zamolodchikov四面体方程的关系,我们回顾了该自旋系统的主要性质,包括可解性、体自由能和临界性,并表明后者对于与更一般的mcgf相关的自旋系统的超立方体上的玻尔兹曼权在n-单纯形的两个对偶计算中的推广。我们为自旋系统的构造提出了关于体自由能和临界性的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal languages, spin systems, and quasicrystals
We present a categorical formalism for context-free languages with morphisms given by correspondences obtained from rational transductions. We show that D0L-systems are a special case of the correspondences that define morphisms in this category. We construct a functorial mapping to aperiodic spin chains. We then generalize this construction to a class of mildly context sensitive grammars, the multiple-context-free grammars (MCFG), with a similar functorial mapping to spin systems in higher dimensions, with Boltzmann weights describing interacting spins on vertices of hypercubes. We show that a particular motivating example for this general construction is provided by the Korepin completely integrable model on the icosahedral quasicrystal, which we construct as the spin system associated to a multiple-context-free grammar describing the geometry of the Ammann planes quasilattice. We review the main properties of this spin system, including solvability, bulk free energy, and criticality, based on results of Baxter and the known relation to the Zamolodchikov tetrahedron equation, and we show that the latter has a generalization for the Boltzmann weights on hypercubes of the spin systems associated to more general MCFGs in terms of two dual cubulations of the n-simplex. We formulate analogous questions about bulk free energy and criticality for our construction of spin systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信