时间分数阶广义非线性Schrödinger方程的守恒律和离散对应律

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Wei Yao , Pin Lyu , Seakweng Vong
{"title":"时间分数阶广义非线性Schrödinger方程的守恒律和离散对应律","authors":"Wei Yao ,&nbsp;Pin Lyu ,&nbsp;Seakweng Vong","doi":"10.1016/j.aml.2025.109654","DOIUrl":null,"url":null,"abstract":"<div><div>We study the conservation laws and structure-preserving numerical methods for the time-fractional generalized nonlinear Schrödinger (TFGNLS) equation. By introducing a fractional chain rule, we obtain a local energy conservation law which is asymptotically compatible with the energy conservation law of the generalized nonlinear Schrödinger (GNLS) equation. On the discrete level, by introducing a discrete fractional chain rule (DFCR), we build up a unified framework to establish the discrete local energy conservation law of variable-step methods without restrictions on time steps, which is suitable for any fractional backward differentiation formulas (FBDF) and fractional Crank–Nicolson (FCN) approximations of Caputo derivative. Numerical experiments are provided to verify the accuracy and efficiency of the variable-step L1 and L2 methods together with an adaptive time-stepping strategy in long time simulations.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"171 ","pages":"Article 109654"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation laws and discrete counterparts for the time-fractional generalized nonlinear Schrödinger equation\",\"authors\":\"Wei Yao ,&nbsp;Pin Lyu ,&nbsp;Seakweng Vong\",\"doi\":\"10.1016/j.aml.2025.109654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the conservation laws and structure-preserving numerical methods for the time-fractional generalized nonlinear Schrödinger (TFGNLS) equation. By introducing a fractional chain rule, we obtain a local energy conservation law which is asymptotically compatible with the energy conservation law of the generalized nonlinear Schrödinger (GNLS) equation. On the discrete level, by introducing a discrete fractional chain rule (DFCR), we build up a unified framework to establish the discrete local energy conservation law of variable-step methods without restrictions on time steps, which is suitable for any fractional backward differentiation formulas (FBDF) and fractional Crank–Nicolson (FCN) approximations of Caputo derivative. Numerical experiments are provided to verify the accuracy and efficiency of the variable-step L1 and L2 methods together with an adaptive time-stepping strategy in long time simulations.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"171 \",\"pages\":\"Article 109654\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了时间分数阶广义非线性Schrödinger (TFGNLS)方程的守恒律和保结构数值方法。通过引入分数链式法则,得到了与广义非线性Schrödinger (GNLS)方程的能量守恒律渐近相容的局部能量守恒律。在离散层面上,通过引入离散分数阶链式规则(DFCR),建立了一个统一的框架来建立不受时间步长限制的变步长方法的离散局部能量守恒律,该守恒律适用于任意分数阶后向微分公式(FBDF)和分数阶Caputo导数的Crank-Nicolson近似(FCN)。数值实验验证了变步长L1和L2方法以及自适应时步策略在长时间仿真中的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conservation laws and discrete counterparts for the time-fractional generalized nonlinear Schrödinger equation
We study the conservation laws and structure-preserving numerical methods for the time-fractional generalized nonlinear Schrödinger (TFGNLS) equation. By introducing a fractional chain rule, we obtain a local energy conservation law which is asymptotically compatible with the energy conservation law of the generalized nonlinear Schrödinger (GNLS) equation. On the discrete level, by introducing a discrete fractional chain rule (DFCR), we build up a unified framework to establish the discrete local energy conservation law of variable-step methods without restrictions on time steps, which is suitable for any fractional backward differentiation formulas (FBDF) and fractional Crank–Nicolson (FCN) approximations of Caputo derivative. Numerical experiments are provided to verify the accuracy and efficiency of the variable-step L1 and L2 methods together with an adaptive time-stepping strategy in long time simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信