非定常不可压缩Navier-Stokes问题的无散度稳定虚元法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yang Li , Minfu Feng , Yanhong Bai
{"title":"非定常不可压缩Navier-Stokes问题的无散度稳定虚元法","authors":"Yang Li ,&nbsp;Minfu Feng ,&nbsp;Yanhong Bai","doi":"10.1016/j.cam.2025.116838","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we extend the divergence-free virtual element method to the unsteady incompressible Navier–Stokes problem, and by enhancing the stabilizing term of the virtual element method, the method can not only exactly preserve the divergence-free constraint, but also control spurious oscillations in the velocity due to dominant convection. Both the continuous-in-time and the fully discrete schemes (Euler semi-implicit scheme) are proposed. The corresponding stability and error estimates are analyzed. Importantly, error estimates are derived in which the constants are independent of the Reynolds number, and error estimates do not explicitly depend on the pressure. Several numerical experiments verify the theoretical results and the favorable performance of the method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"473 ","pages":"Article 116838"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergence-free stabilized virtual element method for the unsteady incompressible Navier–Stokes problem\",\"authors\":\"Yang Li ,&nbsp;Minfu Feng ,&nbsp;Yanhong Bai\",\"doi\":\"10.1016/j.cam.2025.116838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we extend the divergence-free virtual element method to the unsteady incompressible Navier–Stokes problem, and by enhancing the stabilizing term of the virtual element method, the method can not only exactly preserve the divergence-free constraint, but also control spurious oscillations in the velocity due to dominant convection. Both the continuous-in-time and the fully discrete schemes (Euler semi-implicit scheme) are proposed. The corresponding stability and error estimates are analyzed. Importantly, error estimates are derived in which the constants are independent of the Reynolds number, and error estimates do not explicitly depend on the pressure. Several numerical experiments verify the theoretical results and the favorable performance of the method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"473 \",\"pages\":\"Article 116838\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725003528\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725003528","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将无散度虚元法推广到非定常不可压缩的Navier-Stokes问题中,通过增强虚元法的稳定项,该方法不仅能准确地保持无散度约束,而且能控制由于优势对流引起的速度伪振荡。提出了连续格式和全离散格式(欧拉半隐式格式)。分析了相应的稳定性和误差估计。重要的是,导出的误差估计中,常数与雷诺数无关,并且误差估计不明确地依赖于压力。几个数值实验验证了理论结果和该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divergence-free stabilized virtual element method for the unsteady incompressible Navier–Stokes problem
In this paper, we extend the divergence-free virtual element method to the unsteady incompressible Navier–Stokes problem, and by enhancing the stabilizing term of the virtual element method, the method can not only exactly preserve the divergence-free constraint, but also control spurious oscillations in the velocity due to dominant convection. Both the continuous-in-time and the fully discrete schemes (Euler semi-implicit scheme) are proposed. The corresponding stability and error estimates are analyzed. Importantly, error estimates are derived in which the constants are independent of the Reynolds number, and error estimates do not explicitly depend on the pressure. Several numerical experiments verify the theoretical results and the favorable performance of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信