反应扩散方程在时非均质位移环境下的传播特性和强迫行波

IF 2.3 1区 数学 Q1 MATHEMATICS
Lei Zhang , Xiao-Qiang Zhao
{"title":"反应扩散方程在时非均质位移环境下的传播特性和强迫行波","authors":"Lei Zhang ,&nbsp;Xiao-Qiang Zhao","doi":"10.1016/j.matpur.2025.103759","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <span><math><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> represents the shifting distance, and the nonlinearity <span><math><mi>u</mi><mi>g</mi><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is asymptotically of KPP type as <span><math><mi>ξ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> and is negative as <span><math><mi>ξ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Let <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> be the spreading speed of the limiting equation <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>. Under the assumption that the shifting speed <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> admits a uniform mean <em>c</em>, we show that the solutions with compactly supported initial data go to zero eventually when <span><math><mi>c</mi><mo>≤</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the leftward spreading speed is <span><math><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>&gt;</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and the rightward spreading speed is <em>c</em> and <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>≥</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of <span><math><mi>c</mi><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103759"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spreading properties and forced traveling waves of reaction-diffusion equations in a time-heterogeneous shifting environment\",\"authors\":\"Lei Zhang ,&nbsp;Xiao-Qiang Zhao\",\"doi\":\"10.1016/j.matpur.2025.103759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <span><math><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> represents the shifting distance, and the nonlinearity <span><math><mi>u</mi><mi>g</mi><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is asymptotically of KPP type as <span><math><mi>ξ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> and is negative as <span><math><mi>ξ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Let <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> be the spreading speed of the limiting equation <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>. Under the assumption that the shifting speed <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> admits a uniform mean <em>c</em>, we show that the solutions with compactly supported initial data go to zero eventually when <span><math><mi>c</mi><mo>≤</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the leftward spreading speed is <span><math><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>&gt;</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and the rightward spreading speed is <em>c</em> and <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>≥</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of <span><math><mi>c</mi><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103759\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001035\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001035","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一大类时空非均相反应扩散方程ut=uxx+ug(x - ω(t),t,u)的传播动力学,其中ω(t)表示移动距离,非线性ug(ξ,t,u)在ξ→−∞时渐近为KPP型,在ξ→+∞时为负值。设c _为极限方程ut=uxx+ug(−∞,t,u)的扩展速度。在移动速度ω ' (t)允许一个均匀均值c的假设下,我们证明当c≤−c oc oc时,具有紧支持初始数据的解最终趋于零,当c>;−c oc oc时,左向扩展速度为−c oc oc,当c∈(−c oc oc,c oc)和c≥c oc时,右向扩展速度分别为c和c oc。我们还利用c−c的符号证明了强迫行波的存在性、唯一性和不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spreading properties and forced traveling waves of reaction-diffusion equations in a time-heterogeneous shifting environment
In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations ut=uxx+ug(xω(t),t,u), where ω(t) represents the shifting distance, and the nonlinearity ug(ξ,t,u) is asymptotically of KPP type as ξ and is negative as ξ+. Let c be the spreading speed of the limiting equation ut=uxx+ug(,t,u). Under the assumption that the shifting speed ω(t) admits a uniform mean c, we show that the solutions with compactly supported initial data go to zero eventually when cc, the leftward spreading speed is c when c>c, and the rightward spreading speed is c and c when c(c,c) and cc, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of cc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信