{"title":"反应扩散方程在时非均质位移环境下的传播特性和强迫行波","authors":"Lei Zhang , Xiao-Qiang Zhao","doi":"10.1016/j.matpur.2025.103759","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <span><math><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> represents the shifting distance, and the nonlinearity <span><math><mi>u</mi><mi>g</mi><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is asymptotically of KPP type as <span><math><mi>ξ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> and is negative as <span><math><mi>ξ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Let <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> be the spreading speed of the limiting equation <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>. Under the assumption that the shifting speed <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> admits a uniform mean <em>c</em>, we show that the solutions with compactly supported initial data go to zero eventually when <span><math><mi>c</mi><mo>≤</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the leftward spreading speed is <span><math><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>></mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and the rightward spreading speed is <em>c</em> and <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>≥</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of <span><math><mi>c</mi><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103759"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spreading properties and forced traveling waves of reaction-diffusion equations in a time-heterogeneous shifting environment\",\"authors\":\"Lei Zhang , Xiao-Qiang Zhao\",\"doi\":\"10.1016/j.matpur.2025.103759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>−</mo><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, where <span><math><mi>ω</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> represents the shifting distance, and the nonlinearity <span><math><mi>u</mi><mi>g</mi><mo>(</mo><mi>ξ</mi><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> is asymptotically of KPP type as <span><math><mi>ξ</mi><mo>→</mo><mo>−</mo><mo>∞</mo></math></span> and is negative as <span><math><mi>ξ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>. Let <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> be the spreading speed of the limiting equation <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>g</mi><mo>(</mo><mo>−</mo><mo>∞</mo><mo>,</mo><mi>t</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>. Under the assumption that the shifting speed <span><math><msup><mrow><mi>ω</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo></math></span> admits a uniform mean <em>c</em>, we show that the solutions with compactly supported initial data go to zero eventually when <span><math><mi>c</mi><mo>≤</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, the leftward spreading speed is <span><math><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>></mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, and the rightward spreading speed is <em>c</em> and <span><math><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> when <span><math><mi>c</mi><mo>∈</mo><mo>(</mo><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>,</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></math></span> and <span><math><mi>c</mi><mo>≥</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>, respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of <span><math><mi>c</mi><mo>−</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103759\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001035\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001035","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spreading properties and forced traveling waves of reaction-diffusion equations in a time-heterogeneous shifting environment
In this paper, we study the propagation dynamics for a large class of time and space heterogeneous reaction-diffusion equations , where represents the shifting distance, and the nonlinearity is asymptotically of KPP type as and is negative as . Let be the spreading speed of the limiting equation . Under the assumption that the shifting speed admits a uniform mean c, we show that the solutions with compactly supported initial data go to zero eventually when , the leftward spreading speed is when , and the rightward spreading speed is c and when and , respectively. We also establish the existence, uniqueness and nonexistence of the forced traveling wave in terms of the sign of .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.