在可数序数上的群

IF 0.5 4区 数学 Q3 MATHEMATICS
Stepan Milošević , Stevo Todorčević
{"title":"在可数序数上的群","authors":"Stepan Milošević ,&nbsp;Stevo Todorčević","doi":"10.1016/j.topol.2025.109480","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with topological groups constructed from characteristics of walks on countable ordinals. We introduce two groups, constructed from <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and show they are both Fréchet, non-metrizable and that the topological group constructed from <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> has the maximal Tukey type among topological groups of character <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We also consider the group associated with <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> introduced in [12] and show that under some set-theoretic assumptions the group does not have the maximal Tukey type.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"373 ","pages":"Article 109480"},"PeriodicalIF":0.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Groups from walks on countable ordinals\",\"authors\":\"Stepan Milošević ,&nbsp;Stevo Todorčević\",\"doi\":\"10.1016/j.topol.2025.109480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with topological groups constructed from characteristics of walks on countable ordinals. We introduce two groups, constructed from <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and show they are both Fréchet, non-metrizable and that the topological group constructed from <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> has the maximal Tukey type among topological groups of character <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We also consider the group associated with <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> introduced in [12] and show that under some set-theoretic assumptions the group does not have the maximal Tukey type.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"373 \",\"pages\":\"Article 109480\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125002780\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125002780","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了由可数序数上的行走特征构造的拓扑群。引入了由ρ1和ρ3构造的两个群,证明了它们都是fracimcheet,不可度量的,并且证明了由ρ1构造的拓扑群在特征ω1的拓扑群中具有最大的Tukey类型。我们还考虑了[12]中引入的与ρ2相关的群,并证明了在某些集合论假设下,该群不具有极大的Tukey类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Groups from walks on countable ordinals
This paper deals with topological groups constructed from characteristics of walks on countable ordinals. We introduce two groups, constructed from ρ1 and ρ3, and show they are both Fréchet, non-metrizable and that the topological group constructed from ρ1 has the maximal Tukey type among topological groups of character ω1. We also consider the group associated with ρ2 introduced in [12] and show that under some set-theoretic assumptions the group does not have the maximal Tukey type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信