约当代数的长度及以后

IF 0.8 2区 数学 Q2 MATHEMATICS
A.E. Guterman , D.K. Kudryavtsev
{"title":"约当代数的长度及以后","authors":"A.E. Guterman ,&nbsp;D.K. Kudryavtsev","doi":"10.1016/j.jalgebra.2025.05.030","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that the length of the commutative Jordan algebras over a field of the characteristic different from 2 is bounded by the dimension from above. This bound is the same as for the class of associative algebras, but we demonstrate that the length of a given associative algebra can be either greater or lesser or equal to the length of the corresponding adjoint Jordan algebra. We also show that the Jordan identity by itself (or even with commutativity in characteristic 2) does not guarantee a linear bound on growth. In addition, we compute the exact length of bicomplex numbers and biquaternions.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"681 ","pages":"Pages 453-478"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The length of Jordan algebras and beyond\",\"authors\":\"A.E. Guterman ,&nbsp;D.K. Kudryavtsev\",\"doi\":\"10.1016/j.jalgebra.2025.05.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that the length of the commutative Jordan algebras over a field of the characteristic different from 2 is bounded by the dimension from above. This bound is the same as for the class of associative algebras, but we demonstrate that the length of a given associative algebra can be either greater or lesser or equal to the length of the corresponding adjoint Jordan algebra. We also show that the Jordan identity by itself (or even with commutativity in characteristic 2) does not guarantee a linear bound on growth. In addition, we compute the exact length of bicomplex numbers and biquaternions.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"681 \",\"pages\":\"Pages 453-478\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003321\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003321","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了特征不同于2的域上的交换约当代数的长度由上面的维数有界。这个界与关联代数的界相同,但我们证明了给定的关联代数的长度可以大于、小于或等于对应的伴随约当代数的长度。我们还证明了Jordan恒等式本身(甚至在特征2中具有交换性)并不能保证生长的线性界。此外,我们还计算了双复数和双四元数的精确长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The length of Jordan algebras and beyond
We prove that the length of the commutative Jordan algebras over a field of the characteristic different from 2 is bounded by the dimension from above. This bound is the same as for the class of associative algebras, but we demonstrate that the length of a given associative algebra can be either greater or lesser or equal to the length of the corresponding adjoint Jordan algebra. We also show that the Jordan identity by itself (or even with commutativity in characteristic 2) does not guarantee a linear bound on growth. In addition, we compute the exact length of bicomplex numbers and biquaternions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信