一级涡线性化的金兹堡-朗道方程的可解性

IF 1.7 2区 数学 Q1 MATHEMATICS
Manuel del Pino, Rowan Juneman, Monica Musso
{"title":"一级涡线性化的金兹堡-朗道方程的可解性","authors":"Manuel del Pino,&nbsp;Rowan Juneman,&nbsp;Monica Musso","doi":"10.1016/j.jfa.2025.111105","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Ginzburg-Landau equation in the plane linearized around the standard degree-one vortex solution <span><math><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>(</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup></math></span>. Using explicit representation formulae for the Fourier modes in <em>θ</em>, we obtain sharp estimates for the inverse of the linearized operator which hold for a large class of right-hand sides. This theory can be applied, for example, to estimate the inverse after dropping the usual orthogonality conditions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 9","pages":"Article 111105"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability for the Ginzburg-Landau equation linearized at the degree-one vortex\",\"authors\":\"Manuel del Pino,&nbsp;Rowan Juneman,&nbsp;Monica Musso\",\"doi\":\"10.1016/j.jfa.2025.111105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Ginzburg-Landau equation in the plane linearized around the standard degree-one vortex solution <span><math><mi>W</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>(</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>θ</mi></mrow></msup></math></span>. Using explicit representation formulae for the Fourier modes in <em>θ</em>, we obtain sharp estimates for the inverse of the linearized operator which hold for a large class of right-hand sides. This theory can be applied, for example, to estimate the inverse after dropping the usual orthogonality conditions.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 9\",\"pages\":\"Article 111105\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002873\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002873","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑围绕标准一级涡解W(x)= W(r) eθ线性化的平面上的金兹堡-朗道方程。利用θ的傅里叶模的显式表示公式,我们得到了线性化算子的逆的尖锐估计,它适用于大量的右侧。这个理论可以应用,例如,在去掉通常的正交性条件后估计逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability for the Ginzburg-Landau equation linearized at the degree-one vortex
We consider the Ginzburg-Landau equation in the plane linearized around the standard degree-one vortex solution W(x)=w(r)eiθ. Using explicit representation formulae for the Fourier modes in θ, we obtain sharp estimates for the inverse of the linearized operator which hold for a large class of right-hand sides. This theory can be applied, for example, to estimate the inverse after dropping the usual orthogonality conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信