用于预测浮选性能的可解释和广义机器学习模型

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Clement Lartey , Richmond K. Asamoah , Christopher Greet , Massimiliano Zanin , Jixue Liu
{"title":"用于预测浮选性能的可解释和广义机器学习模型","authors":"Clement Lartey ,&nbsp;Richmond K. Asamoah ,&nbsp;Christopher Greet ,&nbsp;Massimiliano Zanin ,&nbsp;Jixue Liu","doi":"10.1016/j.mineng.2025.109492","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in sensor technology and machine learning (ML) have created new opportunities to predict and improve flotation performance in mineral processing. However, existing flotation performance prediction models lack interpretability and are mostly poorly generalised, making drawing insights from model outcomes difficult. This study addresses these gaps by developing a balanced flotation model using an Extreme Gradient Boosting (XGBoost) algorithm. To interpret the model, we visualise the decision-making process using a tree plot and analyse the prediction path of the model. We employed SHAP (SHapely Addictive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to quantify the contribution of each input variable to the model’s predictions. Sensitivity analysis of the input variables revealed patterns that were consistent with the interpretability results, providing additional validation of the model’s decision-making process. The prediction results showed that XGBoost (Extreme Gradient Boosting) model demonstrated superior performance, achieving coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) values of 0.97 and 0.92 for training and testing datasets respectively. This performance surpassed comparative models including Gaussian Process Regression (GPR) with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.91 and 0.88 and Support Vector Regression (SVR) yielding the lowest <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.76 and 0.75 on training and testing datasets respectively. This study enhances flotation performance prediction while providing clear insights into the model prediction outcomes.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"232 ","pages":"Article 109492"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable and generalised machine learning model for predicting flotation performance\",\"authors\":\"Clement Lartey ,&nbsp;Richmond K. Asamoah ,&nbsp;Christopher Greet ,&nbsp;Massimiliano Zanin ,&nbsp;Jixue Liu\",\"doi\":\"10.1016/j.mineng.2025.109492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in sensor technology and machine learning (ML) have created new opportunities to predict and improve flotation performance in mineral processing. However, existing flotation performance prediction models lack interpretability and are mostly poorly generalised, making drawing insights from model outcomes difficult. This study addresses these gaps by developing a balanced flotation model using an Extreme Gradient Boosting (XGBoost) algorithm. To interpret the model, we visualise the decision-making process using a tree plot and analyse the prediction path of the model. We employed SHAP (SHapely Addictive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to quantify the contribution of each input variable to the model’s predictions. Sensitivity analysis of the input variables revealed patterns that were consistent with the interpretability results, providing additional validation of the model’s decision-making process. The prediction results showed that XGBoost (Extreme Gradient Boosting) model demonstrated superior performance, achieving coefficient of determination (<span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>) values of 0.97 and 0.92 for training and testing datasets respectively. This performance surpassed comparative models including Gaussian Process Regression (GPR) with <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.91 and 0.88 and Support Vector Regression (SVR) yielding the lowest <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.76 and 0.75 on training and testing datasets respectively. This study enhances flotation performance prediction while providing clear insights into the model prediction outcomes.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":\"232 \",\"pages\":\"Article 109492\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687525003206\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525003206","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

传感器技术和机器学习(ML)的最新进展为预测和改善矿物加工中的浮选性能创造了新的机会。然而,现有的浮选性能预测模型缺乏可解释性,而且大多泛化程度较差,这使得从模型结果中得出见解变得困难。本研究通过使用极端梯度增强(XGBoost)算法开发平衡浮选模型来解决这些空白。为了解释模型,我们使用树形图将决策过程可视化,并分析模型的预测路径。我们采用SHAP (SHapely addicted exPlanations)和LIME (Local Interpretable model -agnostic exPlanations)来量化每个输入变量对模型预测的贡献。输入变量的敏感性分析揭示了与可解释性结果一致的模式,为模型的决策过程提供了额外的验证。预测结果表明,XGBoost (Extreme Gradient Boosting)模型表现出较好的性能,在训练集和测试集上的决定系数(R2)分别为0.97和0.92。这种性能优于对比模型,包括高斯过程回归(GPR)的R2值分别为0.91和0.88,支持向量回归(SVR)的R2值最低,分别为0.76和0.75在训练和测试数据集上。该研究增强了浮选性能预测,同时为模型预测结果提供了清晰的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable and generalised machine learning model for predicting flotation performance
Recent advances in sensor technology and machine learning (ML) have created new opportunities to predict and improve flotation performance in mineral processing. However, existing flotation performance prediction models lack interpretability and are mostly poorly generalised, making drawing insights from model outcomes difficult. This study addresses these gaps by developing a balanced flotation model using an Extreme Gradient Boosting (XGBoost) algorithm. To interpret the model, we visualise the decision-making process using a tree plot and analyse the prediction path of the model. We employed SHAP (SHapely Addictive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) to quantify the contribution of each input variable to the model’s predictions. Sensitivity analysis of the input variables revealed patterns that were consistent with the interpretability results, providing additional validation of the model’s decision-making process. The prediction results showed that XGBoost (Extreme Gradient Boosting) model demonstrated superior performance, achieving coefficient of determination (R2) values of 0.97 and 0.92 for training and testing datasets respectively. This performance surpassed comparative models including Gaussian Process Regression (GPR) with R2 values of 0.91 and 0.88 and Support Vector Regression (SVR) yielding the lowest R2 values of 0.76 and 0.75 on training and testing datasets respectively. This study enhances flotation performance prediction while providing clear insights into the model prediction outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信