{"title":"红外热成像无损检测的时空融合方法","authors":"Xiaofu Huang , Xingyu Hou , Puxiang Wang , Dong Zhao , Jian Zhao , Hongye Zhang , Zhanwei Liu , Xianfu Huang","doi":"10.1016/j.optlaseng.2025.109133","DOIUrl":null,"url":null,"abstract":"<div><div>The infrared thermography, as a non-contact and highly sensitive non-destructive testing (NDT) method, has been extensively applied in various fields such as aerospace, construction, and industrial manufacturing industry. Current post-processing of dynamic thermal sequences relies mainly on thermal images’ spatial information without incorporating temporal data, compromising defect detection accuracy and efficiency. To address this challenge, we propose a spatio-temporal fusion thermography (STFT) method that enables high-precision of surface defects detection. The method primarily establishes a theoretical model by integrating spatial and temporal gradient information from dynamic thermal sequences, with thermal propagation being estimated using optical flow method. The verification experiment on metal surface defects indicates that the STFT method is capable of reliably detecting surface microcracks as small as 3 μm in width. And it can effectively eliminate the impact of uneven temperature distribution on the test specimens and significantly improves the signal-to-noise ratio (SNR) of the defect images. The proposed method holds great potential for broad application in the field of industrial non-destructive testing, such as detecting surface or near surfac cracks and pitting defects in gears.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"194 ","pages":"Article 109133"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatio-temporal fusion method for non-destructive testing using infrared thermography\",\"authors\":\"Xiaofu Huang , Xingyu Hou , Puxiang Wang , Dong Zhao , Jian Zhao , Hongye Zhang , Zhanwei Liu , Xianfu Huang\",\"doi\":\"10.1016/j.optlaseng.2025.109133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The infrared thermography, as a non-contact and highly sensitive non-destructive testing (NDT) method, has been extensively applied in various fields such as aerospace, construction, and industrial manufacturing industry. Current post-processing of dynamic thermal sequences relies mainly on thermal images’ spatial information without incorporating temporal data, compromising defect detection accuracy and efficiency. To address this challenge, we propose a spatio-temporal fusion thermography (STFT) method that enables high-precision of surface defects detection. The method primarily establishes a theoretical model by integrating spatial and temporal gradient information from dynamic thermal sequences, with thermal propagation being estimated using optical flow method. The verification experiment on metal surface defects indicates that the STFT method is capable of reliably detecting surface microcracks as small as 3 μm in width. And it can effectively eliminate the impact of uneven temperature distribution on the test specimens and significantly improves the signal-to-noise ratio (SNR) of the defect images. The proposed method holds great potential for broad application in the field of industrial non-destructive testing, such as detecting surface or near surfac cracks and pitting defects in gears.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"194 \",\"pages\":\"Article 109133\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816625003185\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816625003185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
A spatio-temporal fusion method for non-destructive testing using infrared thermography
The infrared thermography, as a non-contact and highly sensitive non-destructive testing (NDT) method, has been extensively applied in various fields such as aerospace, construction, and industrial manufacturing industry. Current post-processing of dynamic thermal sequences relies mainly on thermal images’ spatial information without incorporating temporal data, compromising defect detection accuracy and efficiency. To address this challenge, we propose a spatio-temporal fusion thermography (STFT) method that enables high-precision of surface defects detection. The method primarily establishes a theoretical model by integrating spatial and temporal gradient information from dynamic thermal sequences, with thermal propagation being estimated using optical flow method. The verification experiment on metal surface defects indicates that the STFT method is capable of reliably detecting surface microcracks as small as 3 μm in width. And it can effectively eliminate the impact of uneven temperature distribution on the test specimens and significantly improves the signal-to-noise ratio (SNR) of the defect images. The proposed method holds great potential for broad application in the field of industrial non-destructive testing, such as detecting surface or near surfac cracks and pitting defects in gears.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques