{"title":"无完全二部子图的有向图的二分","authors":"Wanjuan Ma, Shufei Wu","doi":"10.1016/j.disc.2025.114649","DOIUrl":null,"url":null,"abstract":"<div><div>It is well-known that every digraph (directed graph) <em>D</em> has a directed cut of size at least <span><math><mi>e</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, and the constant 1/4 cannot be replaced by any larger one. In this paper, motivated by a problem of Scott (2005) <span><span>[26]</span></span> and a conjecture of Lee, Loh and Sudakov (2016) <span><span>[18]</span></span>, we study bisections of digraphs, concentrating on the situation where a large number of arcs cross the bisection in each direction. For any integers <span><math><mi>d</mi><mo>≥</mo><mi>s</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> denote the digraph obtained by orienting each edge of the bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> from the part of size <em>d</em> to the other part. Let <em>D</em> be a digraph with <em>m</em> arcs and minimum outdegree at least <em>d</em>. We prove that if <em>D</em> does not contain <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span>, then <em>D</em> admits a bisection in which at least <span><math><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>d</mi><mi>s</mi><mo>+</mo><mn>2</mn><mi>d</mi><mo>−</mo><mi>s</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>4</mn><mi>d</mi><mo>(</mo><mn>2</mn><mi>d</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>m</mi></math></span> arcs cross the bisection in each direction. Moreover, if the underlying graph of <em>D</em> does not contain triangles, we show that <em>D</em> admits a bisection in which at least <span><math><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>m</mi></math></span> arcs cross the bisection in each direction.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114649"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bisections of directed graphs without complete bipartite subgraphs\",\"authors\":\"Wanjuan Ma, Shufei Wu\",\"doi\":\"10.1016/j.disc.2025.114649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well-known that every digraph (directed graph) <em>D</em> has a directed cut of size at least <span><math><mi>e</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, and the constant 1/4 cannot be replaced by any larger one. In this paper, motivated by a problem of Scott (2005) <span><span>[26]</span></span> and a conjecture of Lee, Loh and Sudakov (2016) <span><span>[18]</span></span>, we study bisections of digraphs, concentrating on the situation where a large number of arcs cross the bisection in each direction. For any integers <span><math><mi>d</mi><mo>≥</mo><mi>s</mi><mo>≥</mo><mn>2</mn></math></span>, let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> denote the digraph obtained by orienting each edge of the bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> from the part of size <em>d</em> to the other part. Let <em>D</em> be a digraph with <em>m</em> arcs and minimum outdegree at least <em>d</em>. We prove that if <em>D</em> does not contain <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>d</mi><mo>,</mo><mi>s</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span>, then <em>D</em> admits a bisection in which at least <span><math><mrow><mo>(</mo><mfrac><mrow><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>d</mi><mi>s</mi><mo>+</mo><mn>2</mn><mi>d</mi><mo>−</mo><mi>s</mi><mo>+</mo><mn>2</mn></mrow><mrow><mn>4</mn><mi>d</mi><mo>(</mo><mn>2</mn><mi>d</mi><mo>−</mo><mn>2</mn><mi>s</mi><mo>+</mo><mn>3</mn><mo>)</mo></mrow></mfrac><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>m</mi></math></span> arcs cross the bisection in each direction. Moreover, if the underlying graph of <em>D</em> does not contain triangles, we show that <em>D</em> admits a bisection in which at least <span><math><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mi>m</mi></math></span> arcs cross the bisection in each direction.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114649\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002572\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002572","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,每个有向图(有向图)D都有一个大小至少为e(D)/4的有向切,并且常数1/4不能被任何更大的常数所取代。在本文中,受Scott(2005)[26]问题和Lee, Loh and Sudakov(2016)[18]猜想的启发,我们研究了有向图的等分线,重点研究了大量弧在每个方向上跨越等分线的情况。对于任意整数d≥s≥2,令Kd,s→表示二部图Kd,s的每条边从大小为d的部分向另一部分定向得到的有向图。设D是一个有向图,有m条弧,最小外度至少为D。我们证明了如果D不包含Kd,s→,则D存在一个至少有(2d2−2ds+2d−s+24d(2d−2s+3)+ 0 (1))m条弧在每个方向上穿过该等分线。此外,如果D的底层图不包含三角形,我们证明D承认一个在每个方向上至少有(1/4+o(1))m条弧穿过平分线的平分线。
Bisections of directed graphs without complete bipartite subgraphs
It is well-known that every digraph (directed graph) D has a directed cut of size at least , and the constant 1/4 cannot be replaced by any larger one. In this paper, motivated by a problem of Scott (2005) [26] and a conjecture of Lee, Loh and Sudakov (2016) [18], we study bisections of digraphs, concentrating on the situation where a large number of arcs cross the bisection in each direction. For any integers , let denote the digraph obtained by orienting each edge of the bipartite graph from the part of size d to the other part. Let D be a digraph with m arcs and minimum outdegree at least d. We prove that if D does not contain , then D admits a bisection in which at least arcs cross the bisection in each direction. Moreover, if the underlying graph of D does not contain triangles, we show that D admits a bisection in which at least arcs cross the bisection in each direction.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.