Ignacio Ceresa Dussel, Julián Fernández Bonder, Nicolas Saintier, Ariel Salort
{"title":"分数阶Lane-Emden hamilton系统","authors":"Ignacio Ceresa Dussel, Julián Fernández Bonder, Nicolas Saintier, Ariel Salort","doi":"10.1016/j.jmaa.2025.129813","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, our interest lies in proving the existence of solutions to the following Fractional Lane-Emden Hamiltonian system:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>v</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>v</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> The method, that can be traced back to the work of De Figueiredo and Felmer <span><span>[5]</span></span>, is flexible enough to deal with more general nonlocal operators and make use of a combination of fractional order Sobolev spaces together with functional calculus for self-adjoint operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129813"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Lane-Emden Hamiltonian systems\",\"authors\":\"Ignacio Ceresa Dussel, Julián Fernández Bonder, Nicolas Saintier, Ariel Salort\",\"doi\":\"10.1016/j.jmaa.2025.129813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, our interest lies in proving the existence of solutions to the following Fractional Lane-Emden Hamiltonian system:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>v</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>v</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> The method, that can be traced back to the work of De Figueiredo and Felmer <span><span>[5]</span></span>, is flexible enough to deal with more general nonlocal operators and make use of a combination of fractional order Sobolev spaces together with functional calculus for self-adjoint operators.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129813\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005943\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005943","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this work, our interest lies in proving the existence of solutions to the following Fractional Lane-Emden Hamiltonian system: The method, that can be traced back to the work of De Figueiredo and Felmer [5], is flexible enough to deal with more general nonlocal operators and make use of a combination of fractional order Sobolev spaces together with functional calculus for self-adjoint operators.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.