Ognyan Kounchev , Hermann Render , Tsvetomir Tsachev
{"title":"环形几何调和和双调和样条插值的误差估计","authors":"Ognyan Kounchev , Hermann Render , Tsvetomir Tsachev","doi":"10.1016/j.jmaa.2025.129795","DOIUrl":null,"url":null,"abstract":"<div><div>The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></math></span>, with respect to a partition by concentric annular domains <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub><mo><</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for radii <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. The biharmonic splines interpolate a smooth function on the spheres <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi></math></span> and satisfy Dirichlet boundary conditions for <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> among all constants <em>c</em> satisfying<span><span><span><math><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo></mo><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo></mo><mrow><mo>|</mo><mi>Δ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span></span></span> for all <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></math></span> vanishing on the boundary of the bounded domain Ω. In this paper we describe <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> for an annulus <span><math><mi>Ω</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> and we will give the estimate<span><span><span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>max</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> where <em>d</em> is the dimension of the underlying space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129795"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates for interpolation by harmonic and biharmonic splines with annular geometry\",\"authors\":\"Ognyan Kounchev , Hermann Render , Tsvetomir Tsachev\",\"doi\":\"10.1016/j.jmaa.2025.129795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></math></span>, with respect to a partition by concentric annular domains <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub><mo><</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for radii <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo><</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. The biharmonic splines interpolate a smooth function on the spheres <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi></math></span> and satisfy Dirichlet boundary conditions for <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> among all constants <em>c</em> satisfying<span><span><span><math><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo></mo><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo></mo><mrow><mo>|</mo><mi>Δ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span></span></span> for all <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></math></span> vanishing on the boundary of the bounded domain Ω. In this paper we describe <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> for an annulus <span><math><mi>Ω</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> and we will give the estimate<span><span><span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>max</mi><mo></mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> where <em>d</em> is the dimension of the underlying space.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129795\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005761\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005761","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Error estimates for interpolation by harmonic and biharmonic splines with annular geometry
The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus , with respect to a partition by concentric annular domains for radii . The biharmonic splines interpolate a smooth function on the spheres for and satisfy Dirichlet boundary conditions for and . It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant among all constants c satisfying for all vanishing on the boundary of the bounded domain Ω. In this paper we describe for an annulus and we will give the estimate where d is the dimension of the underlying space.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.