环形几何调和和双调和样条插值的误差估计

IF 1.2 3区 数学 Q1 MATHEMATICS
Ognyan Kounchev , Hermann Render , Tsvetomir Tsachev
{"title":"环形几何调和和双调和样条插值的误差估计","authors":"Ognyan Kounchev ,&nbsp;Hermann Render ,&nbsp;Tsvetomir Tsachev","doi":"10.1016/j.jmaa.2025.129795","DOIUrl":null,"url":null,"abstract":"<div><div>The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></math></span>, with respect to a partition by concentric annular domains <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>&lt;</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for radii <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. The biharmonic splines interpolate a smooth function on the spheres <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi></math></span> and satisfy Dirichlet boundary conditions for <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> among all constants <em>c</em> satisfying<span><span><span><math><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><mi>Δ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span></span></span> for all <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></math></span> vanishing on the boundary of the bounded domain Ω. In this paper we describe <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> for an annulus <span><math><mi>Ω</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> and we will give the estimate<span><span><span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> where <em>d</em> is the dimension of the underlying space.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129795"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimates for interpolation by harmonic and biharmonic splines with annular geometry\",\"authors\":\"Ognyan Kounchev ,&nbsp;Hermann Render ,&nbsp;Tsvetomir Tsachev\",\"doi\":\"10.1016/j.jmaa.2025.129795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>}</mo></math></span>, with respect to a partition by concentric annular domains <span><math><mo>{</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>&lt;</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> for radii <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. The biharmonic splines interpolate a smooth function on the spheres <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> for <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>N</mi></math></span> and satisfy Dirichlet boundary conditions for <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span>. It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> among all constants <em>c</em> satisfying<span><span><span><math><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≤</mo><mi>c</mi><munder><mi>sup</mi><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><mi>Δ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></math></span></span></span> for all <span><math><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow></math></span> vanishing on the boundary of the bounded domain Ω. In this paper we describe <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span> for an annulus <span><math><mi>Ω</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></math></span> and we will give the estimate<span><span><span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>A</mi><mrow><mo>(</mo><mi>r</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><mi>d</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>8</mn></mrow></mfrac><mo>}</mo><msup><mrow><mo>(</mo><mi>R</mi><mo>−</mo><mi>r</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> where <em>d</em> is the dimension of the underlying space.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 1\",\"pages\":\"Article 129795\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005761\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005761","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要结果是环空{x∈Rd:r1≤|x|≤rN}中双调和样条插值对于半径为0<;r1<....<;rN的同心环域{x∈Rd:rj<;|x|<;rj+1}的分割的误差估计。双调和样条在球体|x|=rj上插值光滑函数,当j=1,…,N,满足|x|=r1和|x|=rN的Dirichlet边界条件。值得注意的是,一维样条理论中的一种优雅的技术,即误差的一种特殊的正交关系,可以推广到双调和样条的情况,从而得到一个优雅的证明。对于误差估计,对于所有f∈C2(Ω)∩c (Ω)消失在有界域Ω边界上的所有f∈C2(Ω)∩c (Ω) |,确定满足supx∈Ω²|f(x)|≤csupx∈Ω²|Δf(x)|的常数c中最小的常数cd(Ω)是很重要的。本文描述了环空Ω=A(r, r)的cd(Ω),并给出了估计In (A(r, r))≤cd(A(r, r))≤max ({12d,18}(r - r)2,其中d是底层空间的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates for interpolation by harmonic and biharmonic splines with annular geometry
The main result in this paper is an error estimate for interpolation by biharmonic splines in an annulus {xRd:r1|x|rN}, with respect to a partition by concentric annular domains {xRd:rj<|x|<rj+1} for radii 0<r1<....<rN. The biharmonic splines interpolate a smooth function on the spheres |x|=rj for j=1,...,N and satisfy Dirichlet boundary conditions for |x|=r1 and |x|=rN. It is a remarkable fact that an elegant technique in the one-dimensional spline theory, namely a special orthogonality relation for the error, can be carried over to the case of biharmonic splines leading to an elegant proof. For the error estimates it is important to determine the smallest constant cd(Ω) among all constants c satisfyingsupxΩ|f(x)|csupxΩ|Δf(x)| for all fC2(Ω)C(Ω) vanishing on the boundary of the bounded domain Ω. In this paper we describe cd(Ω) for an annulus Ω=A(r,R) and we will give the estimatemin{12d,18}(Rr)2cd(A(r,R))max{12d,18}(Rr)2 where d is the dimension of the underlying space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信