{"title":"Rn中半线性方程解径向对称性的定量研究","authors":"Giulio Ciraolo, Matteo Cozzi, Michele Gatti","doi":"10.1016/j.matpur.2025.103755","DOIUrl":null,"url":null,"abstract":"<div><div>A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations <span><math><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> must be radial and radially decreasing. In this paper, we consider both energy solutions in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.</div><div>To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103755"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative study of radial symmetry for solutions to semilinear equations in Rn\",\"authors\":\"Giulio Ciraolo, Matteo Cozzi, Michele Gatti\",\"doi\":\"10.1016/j.matpur.2025.103755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations <span><math><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> must be radial and radially decreasing. In this paper, we consider both energy solutions in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.</div><div>To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103755\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000996\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000996","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Gidas, Ni &;Nirenberg断言,在无穷远处衰减的半线性方程Δu+f(u)=0的正经典解在Rn中必须是径向和径向递减的。本文考虑了这些方程D1,2(Rn)的能量解和小扰动的非能量局部弱解,并研究了它们的定量稳定性对应项。据我们所知,目前的工作提供了第一个涉及拉普拉斯方程的半线性方程的非能量解的定量稳定性结果,甚至对于临界非线性也是如此。
A quantitative study of radial symmetry for solutions to semilinear equations in Rn
A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations in must be radial and radially decreasing. In this paper, we consider both energy solutions in and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.
To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.