Rn中半线性方程解径向对称性的定量研究

IF 2.3 1区 数学 Q1 MATHEMATICS
Giulio Ciraolo, Matteo Cozzi, Michele Gatti
{"title":"Rn中半线性方程解径向对称性的定量研究","authors":"Giulio Ciraolo,&nbsp;Matteo Cozzi,&nbsp;Michele Gatti","doi":"10.1016/j.matpur.2025.103755","DOIUrl":null,"url":null,"abstract":"<div><div>A celebrated result by Gidas, Ni &amp; Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations <span><math><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> must be radial and radially decreasing. In this paper, we consider both energy solutions in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.</div><div>To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103755"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative study of radial symmetry for solutions to semilinear equations in Rn\",\"authors\":\"Giulio Ciraolo,&nbsp;Matteo Cozzi,&nbsp;Michele Gatti\",\"doi\":\"10.1016/j.matpur.2025.103755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A celebrated result by Gidas, Ni &amp; Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations <span><math><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> must be radial and radially decreasing. In this paper, we consider both energy solutions in <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.</div><div>To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"204 \",\"pages\":\"Article 103755\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425000996\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000996","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Gidas, Ni &;Nirenberg断言,在无穷远处衰减的半线性方程Δu+f(u)=0的正经典解在Rn中必须是径向和径向递减的。本文考虑了这些方程D1,2(Rn)的能量解和小扰动的非能量局部弱解,并研究了它们的定量稳定性对应项。据我们所知,目前的工作提供了第一个涉及拉普拉斯方程的半线性方程的非能量解的定量稳定性结果,甚至对于临界非线性也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantitative study of radial symmetry for solutions to semilinear equations in Rn
A celebrated result by Gidas, Ni & Nirenberg asserts that positive classical solutions, decaying at infinity, to semilinear equations Δu+f(u)=0 in Rn must be radial and radially decreasing. In this paper, we consider both energy solutions in D1,2(Rn) and non-energy local weak solutions to small perturbations of these equations, and study its quantitative stability counterpart.
To the best of our knowledge, the present work provides the first quantitative stability result for non-energy solutions to semilinear equations involving the Laplacian, even for the critical nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信