Giulio Sanna , Mario Pistis , Ivan Giorgio , Victor A. Eremeyev , Mario Spagnuolo
{"title":"纤维超材料的新铰链设计使长丝3D打印成为可能","authors":"Giulio Sanna , Mario Pistis , Ivan Giorgio , Victor A. Eremeyev , Mario Spagnuolo","doi":"10.1016/j.mechrescom.2025.104452","DOIUrl":null,"url":null,"abstract":"<div><div>Fibrous metamaterials exhibit remarkable mechanical properties. For their experimental study, additive fabrication is frequently employed. The main problem one faces, when trying to produce by 3D printing a specimen to test, lies in the realization of elements connecting the fibers. This has been achieved using selective laser sintering (SLS) techniques, but appears to be very hard to perform with other printing techniques, like the filament-based one. In this work, we show, within the framework of the particular class of fibrous metamaterials known as pantographic metamaterials, a novel design for connecting hinges specifically optimized for filament-based 3D printing. This has a first fundamental advantage with respect to SLS: filament printing is extremely cheaper and can be accessible nowadays to everybody. Moreover, this hinge design enables faster prototyping, broader customization, and greater reliability in fibrous metamaterial structures.</div></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":"148 ","pages":"Article 104452"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New hinge design for fibrous metamaterial enables for filament 3D printing\",\"authors\":\"Giulio Sanna , Mario Pistis , Ivan Giorgio , Victor A. Eremeyev , Mario Spagnuolo\",\"doi\":\"10.1016/j.mechrescom.2025.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fibrous metamaterials exhibit remarkable mechanical properties. For their experimental study, additive fabrication is frequently employed. The main problem one faces, when trying to produce by 3D printing a specimen to test, lies in the realization of elements connecting the fibers. This has been achieved using selective laser sintering (SLS) techniques, but appears to be very hard to perform with other printing techniques, like the filament-based one. In this work, we show, within the framework of the particular class of fibrous metamaterials known as pantographic metamaterials, a novel design for connecting hinges specifically optimized for filament-based 3D printing. This has a first fundamental advantage with respect to SLS: filament printing is extremely cheaper and can be accessible nowadays to everybody. Moreover, this hinge design enables faster prototyping, broader customization, and greater reliability in fibrous metamaterial structures.</div></div>\",\"PeriodicalId\":49846,\"journal\":{\"name\":\"Mechanics Research Communications\",\"volume\":\"148 \",\"pages\":\"Article 104452\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics Research Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093641325000850\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641325000850","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
New hinge design for fibrous metamaterial enables for filament 3D printing
Fibrous metamaterials exhibit remarkable mechanical properties. For their experimental study, additive fabrication is frequently employed. The main problem one faces, when trying to produce by 3D printing a specimen to test, lies in the realization of elements connecting the fibers. This has been achieved using selective laser sintering (SLS) techniques, but appears to be very hard to perform with other printing techniques, like the filament-based one. In this work, we show, within the framework of the particular class of fibrous metamaterials known as pantographic metamaterials, a novel design for connecting hinges specifically optimized for filament-based 3D printing. This has a first fundamental advantage with respect to SLS: filament printing is extremely cheaper and can be accessible nowadays to everybody. Moreover, this hinge design enables faster prototyping, broader customization, and greater reliability in fibrous metamaterial structures.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.