{"title":"西尔维斯特的β型分布问题","authors":"Anna Gusakova, Zakhar Kabluchko","doi":"10.1016/j.spl.2025.110482","DOIUrl":null,"url":null,"abstract":"<div><div>Consider <span><math><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></math></span> i.i.d. random points <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In this note, we compute the probability that their convex hull is a simplex focusing on three specific distributional settings: <ul><li><span>•</span><span><div>[(i)] the distribution of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is multivariate standard normal.</div></span></li><li><span>•</span><span><div>[(ii)] the density of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is proportional to <span><math><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup></math></span> on the unit ball (the beta distribution).</div></span></li><li><span>•</span><span><div>[(iii)] the density of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is proportional to <span><math><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> (the beta prime distribution).</div></span></li></ul> In the Gaussian case, we show that this probability equals twice the sum of the solid angles of a regular <span><math><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional simplex.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"226 ","pages":"Article 110482"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sylvester’s problem for beta-type distributions\",\"authors\":\"Anna Gusakova, Zakhar Kabluchko\",\"doi\":\"10.1016/j.spl.2025.110482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Consider <span><math><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></math></span> i.i.d. random points <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></msub></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In this note, we compute the probability that their convex hull is a simplex focusing on three specific distributional settings: <ul><li><span>•</span><span><div>[(i)] the distribution of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is multivariate standard normal.</div></span></li><li><span>•</span><span><div>[(ii)] the density of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is proportional to <span><math><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup></math></span> on the unit ball (the beta distribution).</div></span></li><li><span>•</span><span><div>[(iii)] the density of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is proportional to <span><math><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mi>β</mi></mrow></msup></math></span> (the beta prime distribution).</div></span></li></ul> In the Gaussian case, we show that this probability equals twice the sum of the solid angles of a regular <span><math><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional simplex.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"226 \",\"pages\":\"Article 110482\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225001270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225001270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Consider i.i.d. random points in . In this note, we compute the probability that their convex hull is a simplex focusing on three specific distributional settings:
•
[(i)] the distribution of is multivariate standard normal.
•
[(ii)] the density of is proportional to on the unit ball (the beta distribution).
•
[(iii)] the density of is proportional to (the beta prime distribution).
In the Gaussian case, we show that this probability equals twice the sum of the solid angles of a regular -dimensional simplex.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.