{"title":"一种预测空气射流冲击冷却下半球面局部努塞尔数分布的新方法","authors":"Suraj Kumar , Veerendra Kumar , B. Premachandran","doi":"10.1016/j.applthermaleng.2025.127158","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on accurately estimating the local Nusselt number profile (<span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>) on the hot surface of a convex hemispherical block under air jet impingement cooling using the inverse technique such as Bayesian inverse approach with the Metropolis Hastings–Markov Chain Monte Carlo (MH-MCMC) algorithm, which is critical for applications like thermal treatment of materials, electronics cooling, cooling of turbine blade leading-edge, rocket launcher cooling, rotary cement kiln shell cooling, casting industry processes, etc. To accurately evaluate the local Nusselt number profile on the hot hemispherical surface, the unknown parameters <span><math><mi>a</mi></math></span>, <span><math><mi>b</mi></math></span>, and <span><math><mi>c</mi></math></span> of the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile were predicted using the proposed inverse technique combined with artificial neural networks and steady-state temperatures measured on the bottom surface of the hemispherical block. The local Nusselt number profile was predicted as <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>0703</mn><mi>R</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>78</mn></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>[</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>1747</mn><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>001</mn></mrow></msup><mo>]</mo></mrow></mrow></math></span> for the <span><math><mrow><mi>L</mi><mo>/</mo><mi>d</mi></mrow></math></span> ratio of 6 and Reynolds numbers ranging from 23<!--> <!-->000 to 50<!--> <!-->000. Surrogate and synthetic temperature data were initially employed to assess the effectiveness of the inverse method. The estimated parameters closely matched the target values with low percentage deviations, proving the robustness of the inverse method. The local Nusselt number predicted was then compared against local Nusselt number obtained from experiments and <span><math><mrow><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></mrow></math></span> turbulence model simulations, showing strong agreement with the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile estimated using the Bayesian with MH-MCMC approach. Simulated temperature distributions were also analyzed to understand the thermal behavior on the hemispherical surface under various Reynolds numbers. The findings highlight that the proposed inverse methodology accurately predicts the local Nusselt number profile on the hot hemispherical surface under air jet impingement conditions, with potential applications in optimizing cooling processes in various industrial systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"278 ","pages":"Article 127158"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method to predict a local Nusselt number profile on the hemispherical surface under air jet impingement cooling\",\"authors\":\"Suraj Kumar , Veerendra Kumar , B. Premachandran\",\"doi\":\"10.1016/j.applthermaleng.2025.127158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research focuses on accurately estimating the local Nusselt number profile (<span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>) on the hot surface of a convex hemispherical block under air jet impingement cooling using the inverse technique such as Bayesian inverse approach with the Metropolis Hastings–Markov Chain Monte Carlo (MH-MCMC) algorithm, which is critical for applications like thermal treatment of materials, electronics cooling, cooling of turbine blade leading-edge, rocket launcher cooling, rotary cement kiln shell cooling, casting industry processes, etc. To accurately evaluate the local Nusselt number profile on the hot hemispherical surface, the unknown parameters <span><math><mi>a</mi></math></span>, <span><math><mi>b</mi></math></span>, and <span><math><mi>c</mi></math></span> of the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile were predicted using the proposed inverse technique combined with artificial neural networks and steady-state temperatures measured on the bottom surface of the hemispherical block. The local Nusselt number profile was predicted as <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>0703</mn><mi>R</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>78</mn></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>[</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>1747</mn><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>001</mn></mrow></msup><mo>]</mo></mrow></mrow></math></span> for the <span><math><mrow><mi>L</mi><mo>/</mo><mi>d</mi></mrow></math></span> ratio of 6 and Reynolds numbers ranging from 23<!--> <!-->000 to 50<!--> <!-->000. Surrogate and synthetic temperature data were initially employed to assess the effectiveness of the inverse method. The estimated parameters closely matched the target values with low percentage deviations, proving the robustness of the inverse method. The local Nusselt number predicted was then compared against local Nusselt number obtained from experiments and <span><math><mrow><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></mrow></math></span> turbulence model simulations, showing strong agreement with the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile estimated using the Bayesian with MH-MCMC approach. Simulated temperature distributions were also analyzed to understand the thermal behavior on the hemispherical surface under various Reynolds numbers. The findings highlight that the proposed inverse methodology accurately predicts the local Nusselt number profile on the hot hemispherical surface under air jet impingement conditions, with potential applications in optimizing cooling processes in various industrial systems.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"278 \",\"pages\":\"Article 127158\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125017508\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125017508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
本文主要研究了利用Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC)算法的贝叶斯逆方法等逆技术,精确估计空气射流冲击冷却下凸半球形块体热表面的局部努塞尔数分布(Nus),这对于材料热处理、电子冷却、涡轮叶片前缘冷却、火箭发射器冷却、水泥回转窑壳体冷却等应用至关重要。铸造工业工艺等。为了准确地评估热半球表面上的局部努塞尔数分布,利用人工神经网络和半球块底表面的稳态温度相结合的反演技术预测了Nus分布的未知参数a、b和c。当L/d比值为6,雷诺数范围为23 000 ~ 50 000时,局部努塞尔数分布为Nus=0.0703Re0.78exp[−0.1747(s/d)1.001]。最初采用替代和合成温度数据来评估逆方法的有效性。估计参数与目标值吻合较好,偏差较小,证明了逆方法的鲁棒性。然后将预测的局部努塞尔数与从实验和v2 - f湍流模型模拟中获得的局部努塞尔数进行比较,结果表明与使用贝叶斯与MH-MCMC方法估计的Nus剖面高度一致。通过对模拟温度分布的分析,了解了不同雷诺数下半球形表面的热行为。研究结果表明,所提出的逆方法可以准确地预测空气射流冲击条件下热半球表面的局部努塞尔数分布,具有优化各种工业系统冷却过程的潜在应用前景。
A novel method to predict a local Nusselt number profile on the hemispherical surface under air jet impingement cooling
This research focuses on accurately estimating the local Nusselt number profile () on the hot surface of a convex hemispherical block under air jet impingement cooling using the inverse technique such as Bayesian inverse approach with the Metropolis Hastings–Markov Chain Monte Carlo (MH-MCMC) algorithm, which is critical for applications like thermal treatment of materials, electronics cooling, cooling of turbine blade leading-edge, rocket launcher cooling, rotary cement kiln shell cooling, casting industry processes, etc. To accurately evaluate the local Nusselt number profile on the hot hemispherical surface, the unknown parameters , , and of the profile were predicted using the proposed inverse technique combined with artificial neural networks and steady-state temperatures measured on the bottom surface of the hemispherical block. The local Nusselt number profile was predicted as for the ratio of 6 and Reynolds numbers ranging from 23 000 to 50 000. Surrogate and synthetic temperature data were initially employed to assess the effectiveness of the inverse method. The estimated parameters closely matched the target values with low percentage deviations, proving the robustness of the inverse method. The local Nusselt number predicted was then compared against local Nusselt number obtained from experiments and turbulence model simulations, showing strong agreement with the profile estimated using the Bayesian with MH-MCMC approach. Simulated temperature distributions were also analyzed to understand the thermal behavior on the hemispherical surface under various Reynolds numbers. The findings highlight that the proposed inverse methodology accurately predicts the local Nusselt number profile on the hot hemispherical surface under air jet impingement conditions, with potential applications in optimizing cooling processes in various industrial systems.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.