锂离子电池蛋黄壳多级结构掺硼SiOC负极材料

IF 2.4 4区 化学 Q4 ELECTROCHEMISTRY
Lei Chen , Qiaoqiao Ye , Chengxuan Han , Minjie Pu , Hongying Ma , Xiuji Weng , Jianping Yang
{"title":"锂离子电池蛋黄壳多级结构掺硼SiOC负极材料","authors":"Lei Chen ,&nbsp;Qiaoqiao Ye ,&nbsp;Chengxuan Han ,&nbsp;Minjie Pu ,&nbsp;Hongying Ma ,&nbsp;Xiuji Weng ,&nbsp;Jianping Yang","doi":"10.1016/j.ijoes.2025.101099","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a boron-doped yolk-shell structured B-YS@C was constructed on the surface of SiOC anodes with yolk-shell structures via a combination of redox processes, freeze-drying, and heteroatom infiltration. Multilevel pore formation was achieved by controlling experimental conditions. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrate that boron was successfully doped into the material structure, and the yolk-shell structure exhibits good integrity and multilevel pore characteristics. Electrochemical tests show that the boron-doped yolk-shell multilevel structured anode composite delivers excellent specific capacity (473 mAh g<sup>−1</sup>), rate performance, and cycling stability (retaining 99.9 % average coulombic efficiency after 300 cycles) at a current density of 0.5 A g<sup>−1</sup>. Compared with YS@C, the B-YS@C electrode maintains a specific capacity of 473 mAh g<sup>−1</sup> and 99.9 % average coulombic efficiency with almost no capacity decay after 300 cycles at 0.5 A g<sup>−1</sup>, demonstrating ultra-strong cycling stability. These results highlight its broad application prospects.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":"20 9","pages":"Article 101099"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron-doped SiOC anode material with an yolk shell multistage structure for lithium-ion batteries\",\"authors\":\"Lei Chen ,&nbsp;Qiaoqiao Ye ,&nbsp;Chengxuan Han ,&nbsp;Minjie Pu ,&nbsp;Hongying Ma ,&nbsp;Xiuji Weng ,&nbsp;Jianping Yang\",\"doi\":\"10.1016/j.ijoes.2025.101099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a boron-doped yolk-shell structured B-YS@C was constructed on the surface of SiOC anodes with yolk-shell structures via a combination of redox processes, freeze-drying, and heteroatom infiltration. Multilevel pore formation was achieved by controlling experimental conditions. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrate that boron was successfully doped into the material structure, and the yolk-shell structure exhibits good integrity and multilevel pore characteristics. Electrochemical tests show that the boron-doped yolk-shell multilevel structured anode composite delivers excellent specific capacity (473 mAh g<sup>−1</sup>), rate performance, and cycling stability (retaining 99.9 % average coulombic efficiency after 300 cycles) at a current density of 0.5 A g<sup>−1</sup>. Compared with YS@C, the B-YS@C electrode maintains a specific capacity of 473 mAh g<sup>−1</sup> and 99.9 % average coulombic efficiency with almost no capacity decay after 300 cycles at 0.5 A g<sup>−1</sup>, demonstrating ultra-strong cycling stability. These results highlight its broad application prospects.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":\"20 9\",\"pages\":\"Article 101099\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398125001749\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398125001749","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,通过氧化还原过程、冷冻干燥和杂原子渗透的组合,在具有蛋黄壳结构的SiOC阳极表面构建了硼掺杂的蛋黄壳结构B-YS@C。通过控制实验条件,实现了多级孔隙形成。采用x射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的结构和形貌进行了表征。结果表明,硼被成功地掺杂到材料结构中,蛋黄壳结构具有良好的完整性和多层次孔隙特征。电化学测试表明,在电流密度为0.5 a g−1时,掺硼的蛋黄壳多层结构阳极复合材料具有优异的比容量(473 mAh g−1)、倍率性能和循环稳定性(300次循环后平均库仑效率保持99.9 %)。与YS@C相比,B-YS@C电极在0.5 a g−1下循环300次后,比容量为473 mAh g−1,平均库仑效率为99.9% %,几乎没有容量衰减,表现出超强的循环稳定性。这些结果突出了其广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boron-doped SiOC anode material with an yolk shell multistage structure for lithium-ion batteries
In this work, a boron-doped yolk-shell structured B-YS@C was constructed on the surface of SiOC anodes with yolk-shell structures via a combination of redox processes, freeze-drying, and heteroatom infiltration. Multilevel pore formation was achieved by controlling experimental conditions. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results demonstrate that boron was successfully doped into the material structure, and the yolk-shell structure exhibits good integrity and multilevel pore characteristics. Electrochemical tests show that the boron-doped yolk-shell multilevel structured anode composite delivers excellent specific capacity (473 mAh g−1), rate performance, and cycling stability (retaining 99.9 % average coulombic efficiency after 300 cycles) at a current density of 0.5 A g−1. Compared with YS@C, the B-YS@C electrode maintains a specific capacity of 473 mAh g−1 and 99.9 % average coulombic efficiency with almost no capacity decay after 300 cycles at 0.5 A g−1, demonstrating ultra-strong cycling stability. These results highlight its broad application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
20.00%
发文量
714
审稿时长
2.6 months
期刊介绍: International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信