{"title":"带测量数据的p(x)-增长非线性椭圆方程的加权梯度估计","authors":"Zhaosheng Feng , Junjie Zhang , Shenzhou Zheng","doi":"10.1016/j.matpur.2025.103756","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlinear elliptic equation of the form <span><math><mo>−</mo><mtext>div</mtext><mi>A</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>μ</mi></math></span>, where the principle part depends on the solution itself and the right-hand data <em>μ</em> is a signed Radon measure. The associated nonlinearity is assumed to satisfy the <span><math><mo>(</mo><mi>δ</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-BMO condition in <em>x</em> and the Lipschitz continuity condition in <em>u</em>, and its growth in <em>Du</em> is like the <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>-Laplacian, while the boundary of underlying domain is assumed to be Reifenberg flat. We establish an optimal global Calderón-Zygmund type estimate in weighted Lorentz spaces for the gradients of very weak solutions to such a measure data problem. This is achieved by developing the perturbation method and modifying the weighted Vitali type covering argument.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103756"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted gradient estimates to nonlinear elliptic equations of p(x)-growth with measure data\",\"authors\":\"Zhaosheng Feng , Junjie Zhang , Shenzhou Zheng\",\"doi\":\"10.1016/j.matpur.2025.103756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider a nonlinear elliptic equation of the form <span><math><mo>−</mo><mtext>div</mtext><mi>A</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>μ</mi></math></span>, where the principle part depends on the solution itself and the right-hand data <em>μ</em> is a signed Radon measure. The associated nonlinearity is assumed to satisfy the <span><math><mo>(</mo><mi>δ</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-BMO condition in <em>x</em> and the Lipschitz continuity condition in <em>u</em>, and its growth in <em>Du</em> is like the <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>-Laplacian, while the boundary of underlying domain is assumed to be Reifenberg flat. We establish an optimal global Calderón-Zygmund type estimate in weighted Lorentz spaces for the gradients of very weak solutions to such a measure data problem. This is achieved by developing the perturbation method and modifying the weighted Vitali type covering argument.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103756\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242500100X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500100X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Weighted gradient estimates to nonlinear elliptic equations of p(x)-growth with measure data
We consider a nonlinear elliptic equation of the form , where the principle part depends on the solution itself and the right-hand data μ is a signed Radon measure. The associated nonlinearity is assumed to satisfy the -BMO condition in x and the Lipschitz continuity condition in u, and its growth in Du is like the -Laplacian, while the boundary of underlying domain is assumed to be Reifenberg flat. We establish an optimal global Calderón-Zygmund type estimate in weighted Lorentz spaces for the gradients of very weak solutions to such a measure data problem. This is achieved by developing the perturbation method and modifying the weighted Vitali type covering argument.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.