利用费托技术从富含二氧化碳的合成气中提取可持续燃料

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Bart C. A. de Jong, Konstantijn T. Rommens, Tal Rosner, Paul van den Tempel, Léon Rohrbach, G. Leendert Bezemer, Hero J. Heeres, Mark Saeys, Charlotte Vogt and Jingxiu Xie*, 
{"title":"利用费托技术从富含二氧化碳的合成气中提取可持续燃料","authors":"Bart C. A. de Jong,&nbsp;Konstantijn T. Rommens,&nbsp;Tal Rosner,&nbsp;Paul van den Tempel,&nbsp;Léon Rohrbach,&nbsp;G. Leendert Bezemer,&nbsp;Hero J. Heeres,&nbsp;Mark Saeys,&nbsp;Charlotte Vogt and Jingxiu Xie*,&nbsp;","doi":"10.1021/acscatal.5c0302410.1021/acscatal.5c03024","DOIUrl":null,"url":null,"abstract":"<p >CO<sub>2</sub>-containing synthesis gas is a relevant feedstock for the production of synthetic fuels using Fischer–Tropsch synthesis (FTS). We report the role of CO<sub>2</sub> in CO<sub>2</sub>, CO, and H<sub>2</sub> mixed feeds over a cobalt-based catalyst at 220 °C and 21 bar in a packed bed reactor and define the process boundary conditions where CO<sub>2</sub> switches from an inert to a reactive gas in FTS. The C<sub>5+</sub> selectivity remains above 78% even for CO<sub>2</sub>-rich synthesis gas with 75% CO<sub>2</sub>/(CO + CO<sub>2</sub>). Using <sup>13</sup>CO<sub>2</sub> isotopic labeling, the increase in methane selectivity is attributed to both CO and CO<sub>2</sub> methanation, which is limited by maintaining a H<sub>2</sub>/CO outlet ratio below 10 and an outlet CO partial pressure above 0.2 bar, respectively. CO and CO<sub>2</sub> are proposed to adsorb on the same Co sites, and with CO adsorption being more favorable, we postulate that sufficient CO prevents CO<sub>2</sub> adsorption and reaction. These results overturn the prevailing assumption that C<sub>5+</sub> selectivity is dictated by the CO<sub>2</sub> partial pressure or the CO<sub>2</sub>/CO ratios. In situ modulated diffuse reflectance infrared Fourier transform spectroscopy confirms a positive relationship between CO surface coverage and CO partial pressure. From DFT and microkinetic modeling, enhanced CO and CO<sub>2</sub> methanation could be attributed to a lower surface coverage and a higher H<sub>2</sub> surface coverage. This work identifies boundaries for efficient cobalt-catalyzed mixed-feed FTS for synthetic fuel production.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 12","pages":"10946–10956 10946–10956"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscatal.5c03024","citationCount":"0","resultStr":"{\"title\":\"Sustainable Fuels from CO2-Rich Synthesis Gas via Fischer–Tropsch Technology\",\"authors\":\"Bart C. A. de Jong,&nbsp;Konstantijn T. Rommens,&nbsp;Tal Rosner,&nbsp;Paul van den Tempel,&nbsp;Léon Rohrbach,&nbsp;G. Leendert Bezemer,&nbsp;Hero J. Heeres,&nbsp;Mark Saeys,&nbsp;Charlotte Vogt and Jingxiu Xie*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c0302410.1021/acscatal.5c03024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >CO<sub>2</sub>-containing synthesis gas is a relevant feedstock for the production of synthetic fuels using Fischer–Tropsch synthesis (FTS). We report the role of CO<sub>2</sub> in CO<sub>2</sub>, CO, and H<sub>2</sub> mixed feeds over a cobalt-based catalyst at 220 °C and 21 bar in a packed bed reactor and define the process boundary conditions where CO<sub>2</sub> switches from an inert to a reactive gas in FTS. The C<sub>5+</sub> selectivity remains above 78% even for CO<sub>2</sub>-rich synthesis gas with 75% CO<sub>2</sub>/(CO + CO<sub>2</sub>). Using <sup>13</sup>CO<sub>2</sub> isotopic labeling, the increase in methane selectivity is attributed to both CO and CO<sub>2</sub> methanation, which is limited by maintaining a H<sub>2</sub>/CO outlet ratio below 10 and an outlet CO partial pressure above 0.2 bar, respectively. CO and CO<sub>2</sub> are proposed to adsorb on the same Co sites, and with CO adsorption being more favorable, we postulate that sufficient CO prevents CO<sub>2</sub> adsorption and reaction. These results overturn the prevailing assumption that C<sub>5+</sub> selectivity is dictated by the CO<sub>2</sub> partial pressure or the CO<sub>2</sub>/CO ratios. In situ modulated diffuse reflectance infrared Fourier transform spectroscopy confirms a positive relationship between CO surface coverage and CO partial pressure. From DFT and microkinetic modeling, enhanced CO and CO<sub>2</sub> methanation could be attributed to a lower surface coverage and a higher H<sub>2</sub> surface coverage. This work identifies boundaries for efficient cobalt-catalyzed mixed-feed FTS for synthetic fuel production.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 12\",\"pages\":\"10946–10956 10946–10956\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acscatal.5c03024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c03024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c03024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

含二氧化碳的合成气是利用费托合成(FTS)技术生产合成燃料的重要原料。我们报告了CO2在CO2, CO和H2混合进料中的作用,在220°C和21 bar的钴基催化剂上,在填充床反应器中,并定义了CO2在FTS中从惰性气体到活性气体转换的过程边界条件。对于CO2/(CO + CO2)为75%的富CO2合成气,C5+选择性仍保持在78%以上。利用13CO2同位素标记,甲烷选择性的增加归因于CO和CO2的甲烷化,H2/CO出口比分别保持在10以下和CO出口分压高于0.2 bar。CO和CO2被建议在相同的CO位点上吸附,并且CO的吸附更有利,我们假设足够的CO可以阻止CO2的吸附和反应。这些结果推翻了C5+选择性由CO2分压或CO2/CO比决定的普遍假设。原位调制漫反射红外傅立叶变换光谱证实了CO表面覆盖率与CO分压之间的正相关关系。从DFT和微动力学模型来看,CO和CO2甲烷化的增强可能归因于较低的表面覆盖率和较高的H2表面覆盖率。这项工作确定了用于合成燃料生产的高效钴催化混合进料FTS的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustainable Fuels from CO2-Rich Synthesis Gas via Fischer–Tropsch Technology

CO2-containing synthesis gas is a relevant feedstock for the production of synthetic fuels using Fischer–Tropsch synthesis (FTS). We report the role of CO2 in CO2, CO, and H2 mixed feeds over a cobalt-based catalyst at 220 °C and 21 bar in a packed bed reactor and define the process boundary conditions where CO2 switches from an inert to a reactive gas in FTS. The C5+ selectivity remains above 78% even for CO2-rich synthesis gas with 75% CO2/(CO + CO2). Using 13CO2 isotopic labeling, the increase in methane selectivity is attributed to both CO and CO2 methanation, which is limited by maintaining a H2/CO outlet ratio below 10 and an outlet CO partial pressure above 0.2 bar, respectively. CO and CO2 are proposed to adsorb on the same Co sites, and with CO adsorption being more favorable, we postulate that sufficient CO prevents CO2 adsorption and reaction. These results overturn the prevailing assumption that C5+ selectivity is dictated by the CO2 partial pressure or the CO2/CO ratios. In situ modulated diffuse reflectance infrared Fourier transform spectroscopy confirms a positive relationship between CO surface coverage and CO partial pressure. From DFT and microkinetic modeling, enhanced CO and CO2 methanation could be attributed to a lower surface coverage and a higher H2 surface coverage. This work identifies boundaries for efficient cobalt-catalyzed mixed-feed FTS for synthetic fuel production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信