Amin Naifar, Kods Oueslati, Eder Claudio Lima, Fatma Aouaini, Abdelmottaleb Ben Lamine
{"title":"卡托普利在生物吸附剂上吸附的深入研究:统计物理方法和孔隙表征,吸附等温线建模,能量和空间分析","authors":"Amin Naifar, Kods Oueslati, Eder Claudio Lima, Fatma Aouaini, Abdelmottaleb Ben Lamine","doi":"10.1021/acs.langmuir.5c01235","DOIUrl":null,"url":null,"abstract":"This current research implements statistical physics principles to microscopically elucidate and interpret the retention mechanism of Captopril onto the activated carbon derived from Butia catarinensis (ABc-600) for water decontamination. The empirical points were modeled exploiting four different statistical isotherm frameworks: the single-energy monolayer, dual-energy monolayer, trienergetic monolayer and dual-energy bilayer. Supported by an error quantification approach (<i>R</i><sup>2</sup>, Reduced Chi-Square, RSS and <i>R</i><sub>adj</sub><sup>2</sup>) the single-energy monolayer was identified as the most rigorous scenario. Stereographic analysis revealed that the adsorption sites consistently capture a fraction of the adsorbed species with <i>n</i> < 1 across all tested temperatures indicating a multianchorage mechanism without aggregation. The decrease in the monolayer adsorbed amount with incrementing temperature highlights the endothermic nature of the Captopril/ABc-600 retention mechanism. Moreover, the energetic assessment corroborates the predominance of physisorption (<40 kJ/mol) indicating that van der Waals forces primarily govern the docking operation. PSD examination revealed a predominantly macroporous structure (0.7 μm) with a discernible shift toward smaller pore radii at elevated temperatures. The AED curves consistently displayed physisorption within the 22–29 kJ/mol energy range across all temperature conditions.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"600 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Depth Study of Captopril Adsorption on a Biosourced Adsorbent: Statistical Physics Approach and Pore Characterization, with Modeling of Adsorption Isotherms, Energetic and Steric Analysis\",\"authors\":\"Amin Naifar, Kods Oueslati, Eder Claudio Lima, Fatma Aouaini, Abdelmottaleb Ben Lamine\",\"doi\":\"10.1021/acs.langmuir.5c01235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This current research implements statistical physics principles to microscopically elucidate and interpret the retention mechanism of Captopril onto the activated carbon derived from Butia catarinensis (ABc-600) for water decontamination. The empirical points were modeled exploiting four different statistical isotherm frameworks: the single-energy monolayer, dual-energy monolayer, trienergetic monolayer and dual-energy bilayer. Supported by an error quantification approach (<i>R</i><sup>2</sup>, Reduced Chi-Square, RSS and <i>R</i><sub>adj</sub><sup>2</sup>) the single-energy monolayer was identified as the most rigorous scenario. Stereographic analysis revealed that the adsorption sites consistently capture a fraction of the adsorbed species with <i>n</i> < 1 across all tested temperatures indicating a multianchorage mechanism without aggregation. The decrease in the monolayer adsorbed amount with incrementing temperature highlights the endothermic nature of the Captopril/ABc-600 retention mechanism. Moreover, the energetic assessment corroborates the predominance of physisorption (<40 kJ/mol) indicating that van der Waals forces primarily govern the docking operation. PSD examination revealed a predominantly macroporous structure (0.7 μm) with a discernible shift toward smaller pore radii at elevated temperatures. The AED curves consistently displayed physisorption within the 22–29 kJ/mol energy range across all temperature conditions.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"600 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.5c01235\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c01235","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In-Depth Study of Captopril Adsorption on a Biosourced Adsorbent: Statistical Physics Approach and Pore Characterization, with Modeling of Adsorption Isotherms, Energetic and Steric Analysis
This current research implements statistical physics principles to microscopically elucidate and interpret the retention mechanism of Captopril onto the activated carbon derived from Butia catarinensis (ABc-600) for water decontamination. The empirical points were modeled exploiting four different statistical isotherm frameworks: the single-energy monolayer, dual-energy monolayer, trienergetic monolayer and dual-energy bilayer. Supported by an error quantification approach (R2, Reduced Chi-Square, RSS and Radj2) the single-energy monolayer was identified as the most rigorous scenario. Stereographic analysis revealed that the adsorption sites consistently capture a fraction of the adsorbed species with n < 1 across all tested temperatures indicating a multianchorage mechanism without aggregation. The decrease in the monolayer adsorbed amount with incrementing temperature highlights the endothermic nature of the Captopril/ABc-600 retention mechanism. Moreover, the energetic assessment corroborates the predominance of physisorption (<40 kJ/mol) indicating that van der Waals forces primarily govern the docking operation. PSD examination revealed a predominantly macroporous structure (0.7 μm) with a discernible shift toward smaller pore radii at elevated temperatures. The AED curves consistently displayed physisorption within the 22–29 kJ/mol energy range across all temperature conditions.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).