双通道调节自旋极化在尖晶石铁氧体中实现1 + 1 bbb2电催化性能

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinli Zhu, Xuebing Peng, Pinxian Xi, Chenglong Jia* and Daqiang Gao*, 
{"title":"双通道调节自旋极化在尖晶石铁氧体中实现1 + 1 bbb2电催化性能","authors":"Jinli Zhu,&nbsp;Xuebing Peng,&nbsp;Pinxian Xi,&nbsp;Chenglong Jia* and Daqiang Gao*,&nbsp;","doi":"10.1021/acs.nanolett.5c01462","DOIUrl":null,"url":null,"abstract":"<p >Electron spin polarization enhances the kinetics of the oxygen evolution reaction (OER), a rate-limiting step that restricts the energy efficiency of water splitting. Here, a dual-channel spin-regulated strategy combining chiral-induced spin selectivity (CISS) and external magnetic field (<i>M</i><sub><i>H</i></sub>)-induced spin polarization synergistically reduces the overpotential and enhances durability in spinel-based ferromagnetic materials. Chiral molecule-modified CoFe<sub>2</sub>O<sub>4</sub> under <i>M</i><sub><i>H</i></sub> (CFO-L-M) achieves a 90 mV reduction in overpotential compared to unmodified CFO, which is primarily ascribed to the synergistic “1 + 1 &gt; 2” effect arising from the dual-spin channel mechanism. Theoretical calculations show that surface spin states critically influence adsorbate binding, with spin selectivity and polarization being activated during the first electron transfer step, ultimately producing triplet O<sub>2</sub>. This study elucidates spin-related OER kinetics, offering a foundation for designing advanced spin-dependent electrocatalysts.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 26","pages":"10337–10344"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Channel Regulation of Spin Polarization Achieves 1 + 1 > 2 Electrocatalytic Performance in Spinel Ferrites\",\"authors\":\"Jinli Zhu,&nbsp;Xuebing Peng,&nbsp;Pinxian Xi,&nbsp;Chenglong Jia* and Daqiang Gao*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c01462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electron spin polarization enhances the kinetics of the oxygen evolution reaction (OER), a rate-limiting step that restricts the energy efficiency of water splitting. Here, a dual-channel spin-regulated strategy combining chiral-induced spin selectivity (CISS) and external magnetic field (<i>M</i><sub><i>H</i></sub>)-induced spin polarization synergistically reduces the overpotential and enhances durability in spinel-based ferromagnetic materials. Chiral molecule-modified CoFe<sub>2</sub>O<sub>4</sub> under <i>M</i><sub><i>H</i></sub> (CFO-L-M) achieves a 90 mV reduction in overpotential compared to unmodified CFO, which is primarily ascribed to the synergistic “1 + 1 &gt; 2” effect arising from the dual-spin channel mechanism. Theoretical calculations show that surface spin states critically influence adsorbate binding, with spin selectivity and polarization being activated during the first electron transfer step, ultimately producing triplet O<sub>2</sub>. This study elucidates spin-related OER kinetics, offering a foundation for designing advanced spin-dependent electrocatalysts.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 26\",\"pages\":\"10337–10344\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01462\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01462","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子自旋极化增强了析氧反应(OER)的动力学,这是一个限制水裂解能量效率的限速步骤。本文采用手性诱导自旋选择性(CISS)和外磁场(MH)诱导自旋极化相结合的双通道自旋调节策略,协同降低了尖晶石基铁磁材料的过电位,提高了材料的耐久性。在MH (CFO- l -m)作用下,手性分子修饰的CoFe2O4与未修饰的CFO相比,过电位降低了90 mV,这主要归功于协同的“1 + 1 >;由双自旋通道机制产生的2 "效应。理论计算表明,表面自旋态严重影响吸附质结合,自旋选择性和极化在第一个电子转移步骤中被激活,最终产生三重态O2。该研究阐明了自旋相关的OER动力学,为设计先进的自旋依赖电催化剂提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Channel Regulation of Spin Polarization Achieves 1 + 1 > 2 Electrocatalytic Performance in Spinel Ferrites

Dual-Channel Regulation of Spin Polarization Achieves 1 + 1 > 2 Electrocatalytic Performance in Spinel Ferrites

Dual-Channel Regulation of Spin Polarization Achieves 1 + 1 > 2 Electrocatalytic Performance in Spinel Ferrites

Electron spin polarization enhances the kinetics of the oxygen evolution reaction (OER), a rate-limiting step that restricts the energy efficiency of water splitting. Here, a dual-channel spin-regulated strategy combining chiral-induced spin selectivity (CISS) and external magnetic field (MH)-induced spin polarization synergistically reduces the overpotential and enhances durability in spinel-based ferromagnetic materials. Chiral molecule-modified CoFe2O4 under MH (CFO-L-M) achieves a 90 mV reduction in overpotential compared to unmodified CFO, which is primarily ascribed to the synergistic “1 + 1 > 2” effect arising from the dual-spin channel mechanism. Theoretical calculations show that surface spin states critically influence adsorbate binding, with spin selectivity and polarization being activated during the first electron transfer step, ultimately producing triplet O2. This study elucidates spin-related OER kinetics, offering a foundation for designing advanced spin-dependent electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信