非共线Mn3Pt多层膜的反铁磁序裁剪和自旋输运

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shaohai Chen, Bee Chun Lim, Dennis J. X. Lin, Jian Rui Soh, Hui Ru Tan, Hang Khume Tan, Yu Yu Ko Hnin, Seng Kai Wong, Mingsheng Zhang, Robert Laskowski, Tieyang Zhao, Jingsheng Chen, Khoong Hong Khoo, Pin Ho
{"title":"非共线Mn3Pt多层膜的反铁磁序裁剪和自旋输运","authors":"Shaohai Chen, Bee Chun Lim, Dennis J. X. Lin, Jian Rui Soh, Hui Ru Tan, Hang Khume Tan, Yu Yu Ko Hnin, Seng Kai Wong, Mingsheng Zhang, Robert Laskowski, Tieyang Zhao, Jingsheng Chen, Khoong Hong Khoo, Pin Ho","doi":"10.1002/adfm.202507406","DOIUrl":null,"url":null,"abstract":"Noncollinear antiferromagnetic (NCAF) materials, such as Mn₃Pt, exhibit remarkable spin-orbit and tunneling phenomena, positioning them as promising candidates for low-power, stray-field immune nanoelectronics. However, precise control of AF order and spin transport properties, and understanding of their physical mechanisms, remains challenging. In this work, the interplay between crystal structure, magnetic orders, and anomalous Hall effect (AHE) is established in single-crystalline Mn₃Pt (001) synthesized from a [Mn/Pt]<sub>20</sub> multilayers with tunable Mn layer thickness (<i>t</i><sub>Mn</sub>). Resonant elastic X-ray scattering reveals a magnetic order transition at <i>T</i><sub>c</sub>≈240 K for the sample with <i>t</i><sub>Mn</sub> = 0.7 nm, which notably coincides with an AHE polarity reversal at ≈230 K. Importantly, we demonstrate that <i>T</i><sub>c</sub> can be precisely engineered by fine-tuning <i>t</i><sub>Mn</sub> to modulate lattice constant and spin canting. Further, first-principles calculations affirm the lattice parameter and spin canting dependence of AHE from the ground-state <i>Γ</i><sub>10</sub> magnetic symmetry. Finally, a refined analytical model is introduced to elucidate the intrinsic and extrinsic AHE contributions in NCAF material comprising hybrid magnetic orders. These findings provide a robust framework for tailoring transport properties toward the realization of next-generation AF computing technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"600 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Antiferromagnetic Orders and Spin Transport in Noncollinear Mn3Pt Multilayers\",\"authors\":\"Shaohai Chen, Bee Chun Lim, Dennis J. X. Lin, Jian Rui Soh, Hui Ru Tan, Hang Khume Tan, Yu Yu Ko Hnin, Seng Kai Wong, Mingsheng Zhang, Robert Laskowski, Tieyang Zhao, Jingsheng Chen, Khoong Hong Khoo, Pin Ho\",\"doi\":\"10.1002/adfm.202507406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noncollinear antiferromagnetic (NCAF) materials, such as Mn₃Pt, exhibit remarkable spin-orbit and tunneling phenomena, positioning them as promising candidates for low-power, stray-field immune nanoelectronics. However, precise control of AF order and spin transport properties, and understanding of their physical mechanisms, remains challenging. In this work, the interplay between crystal structure, magnetic orders, and anomalous Hall effect (AHE) is established in single-crystalline Mn₃Pt (001) synthesized from a [Mn/Pt]<sub>20</sub> multilayers with tunable Mn layer thickness (<i>t</i><sub>Mn</sub>). Resonant elastic X-ray scattering reveals a magnetic order transition at <i>T</i><sub>c</sub>≈240 K for the sample with <i>t</i><sub>Mn</sub> = 0.7 nm, which notably coincides with an AHE polarity reversal at ≈230 K. Importantly, we demonstrate that <i>T</i><sub>c</sub> can be precisely engineered by fine-tuning <i>t</i><sub>Mn</sub> to modulate lattice constant and spin canting. Further, first-principles calculations affirm the lattice parameter and spin canting dependence of AHE from the ground-state <i>Γ</i><sub>10</sub> magnetic symmetry. Finally, a refined analytical model is introduced to elucidate the intrinsic and extrinsic AHE contributions in NCAF material comprising hybrid magnetic orders. These findings provide a robust framework for tailoring transport properties toward the realization of next-generation AF computing technologies.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"600 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202507406\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507406","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非共线反铁磁(NCAF)材料,如Mn₃Pt,表现出显著的自旋轨道和隧道现象,使它们成为低功耗、杂散场免疫纳米电子学的有希望的候选者。然而,精确控制AF顺序和自旋输运性质以及了解它们的物理机制仍然具有挑战性。在这项工作中,在由Mn层厚度可调的[Mn/Pt]20多层材料合成的单晶Mn₃Pt(001)中,建立了晶体结构、磁序和反常霍尔效应(AHE)之间的相互作用。对于tMn = 0.7 nm的样品,共振弹性x射线散射结果表明,在Tc≈240 K处发生磁序跃迁,与在≈230 K处发生的AHE极性反转相吻合。重要的是,我们证明了通过微调tMn来调制晶格常数和自旋倾斜可以精确地设计Tc。此外,第一性原理计算证实了AHE的晶格参数和自旋倾斜依赖于基态Γ10磁对称性。最后,引入了一个精细化的解析模型来解释包含混合磁阶的NCAF材料的本征和外征AHE贡献。这些发现为实现下一代AF计算技术定制传输特性提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring Antiferromagnetic Orders and Spin Transport in Noncollinear Mn3Pt Multilayers

Tailoring Antiferromagnetic Orders and Spin Transport in Noncollinear Mn3Pt Multilayers
Noncollinear antiferromagnetic (NCAF) materials, such as Mn₃Pt, exhibit remarkable spin-orbit and tunneling phenomena, positioning them as promising candidates for low-power, stray-field immune nanoelectronics. However, precise control of AF order and spin transport properties, and understanding of their physical mechanisms, remains challenging. In this work, the interplay between crystal structure, magnetic orders, and anomalous Hall effect (AHE) is established in single-crystalline Mn₃Pt (001) synthesized from a [Mn/Pt]20 multilayers with tunable Mn layer thickness (tMn). Resonant elastic X-ray scattering reveals a magnetic order transition at Tc≈240 K for the sample with tMn = 0.7 nm, which notably coincides with an AHE polarity reversal at ≈230 K. Importantly, we demonstrate that Tc can be precisely engineered by fine-tuning tMn to modulate lattice constant and spin canting. Further, first-principles calculations affirm the lattice parameter and spin canting dependence of AHE from the ground-state Γ10 magnetic symmetry. Finally, a refined analytical model is introduced to elucidate the intrinsic and extrinsic AHE contributions in NCAF material comprising hybrid magnetic orders. These findings provide a robust framework for tailoring transport properties toward the realization of next-generation AF computing technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信