效率超过18%的CsxFA1 - xPbI3钙钛矿量子点太阳能电池的原位双离子电荷补偿

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guoliang Wang, Bainian Ren, Xinyi Mei, Mingxu Zhang, Junming Qiu, Zhimei Sun, Xiaoliang Zhang
{"title":"效率超过18%的CsxFA1 - xPbI3钙钛矿量子点太阳能电池的原位双离子电荷补偿","authors":"Guoliang Wang,&nbsp;Bainian Ren,&nbsp;Xinyi Mei,&nbsp;Mingxu Zhang,&nbsp;Junming Qiu,&nbsp;Zhimei Sun,&nbsp;Xiaoliang Zhang","doi":"10.1002/adma.202508425","DOIUrl":null,"url":null,"abstract":"<p>Cesium-formamidinium lead triiodide perovskite quantum dots (Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs) receive increasing attention for new-generation solar cells due to their outstanding optoelectronic properties and solution processibility. However, during the synthesis of Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs, PQDs seriously suffer from the ligand detachment from the PQD surface under the polar antisolvent, leaving numerous surface vacancies that significantly compromise the surface lattice integrity and optoelectronic properties of PQDs. A facile dual-ionic charge compensation strategy is introduced through the bimolecular nucleophilic substitution (<i>S</i><sub>N</sub>2) to reinforce the surface lattice of Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs. The dual-ionic ligands produced during the <i>S</i><sub>N</sub>2 reaction could in situ fill the surface vacancies of PQDs in the nonpolar solvent, which significantly improves the surface lattice integrity and thus the optoelectronic properties of PQDs, substantially diminishing trap-assisted nonradiative recombination. Consequently, the PQDs solar cells show a power conversion efficiency of up to 18.17%, representing the highest efficiency in Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQD solar cells. The remarkable photovoltaic performance is attributed to the reinforced surface lattice of PQDs, suppressing the energy losses induced by the nonradiative recombination. This study provides crucial design principles for optimizing the crystalline structure integrity of PQDs, which also paves a new avenue for developing high-performance solar cells or other optoelectronic devices.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 35","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Dual-Ionic Charge Compensation for CsxFA1-xPbI3 Perovskite Quantum Dot Solar Cells with Over 18% Efficiency\",\"authors\":\"Guoliang Wang,&nbsp;Bainian Ren,&nbsp;Xinyi Mei,&nbsp;Mingxu Zhang,&nbsp;Junming Qiu,&nbsp;Zhimei Sun,&nbsp;Xiaoliang Zhang\",\"doi\":\"10.1002/adma.202508425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cesium-formamidinium lead triiodide perovskite quantum dots (Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs) receive increasing attention for new-generation solar cells due to their outstanding optoelectronic properties and solution processibility. However, during the synthesis of Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs, PQDs seriously suffer from the ligand detachment from the PQD surface under the polar antisolvent, leaving numerous surface vacancies that significantly compromise the surface lattice integrity and optoelectronic properties of PQDs. A facile dual-ionic charge compensation strategy is introduced through the bimolecular nucleophilic substitution (<i>S</i><sub>N</sub>2) to reinforce the surface lattice of Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQDs. The dual-ionic ligands produced during the <i>S</i><sub>N</sub>2 reaction could in situ fill the surface vacancies of PQDs in the nonpolar solvent, which significantly improves the surface lattice integrity and thus the optoelectronic properties of PQDs, substantially diminishing trap-assisted nonradiative recombination. Consequently, the PQDs solar cells show a power conversion efficiency of up to 18.17%, representing the highest efficiency in Cs<sub>x</sub>FA<sub>1-x</sub>PbI<sub>3</sub> PQD solar cells. The remarkable photovoltaic performance is attributed to the reinforced surface lattice of PQDs, suppressing the energy losses induced by the nonradiative recombination. This study provides crucial design principles for optimizing the crystalline structure integrity of PQDs, which also paves a new avenue for developing high-performance solar cells or other optoelectronic devices.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 35\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508425\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202508425","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铯-甲脒-三碘化铅钙钛矿量子点(CsxFA1 - xPbI3 PQDs)由于其出色的光电性能和溶液可加工性,在新一代太阳能电池中受到越来越多的关注。然而,在CsxFA1‐xPbI3 PQD的合成过程中,在极性反溶剂作用下,PQD表面的配体严重脱落,留下大量的表面空位,严重影响了PQD的表面晶格完整性和光电性能。通过双分子亲核取代(SN2),引入了一种简便的双离子电荷补偿策略来增强CsxFA1 - xPbI3 PQDs的表面晶格。SN2反应产生的双离子配体可以原位填补PQDs在非极性溶剂中的表面空缺,这显著提高了PQDs的表面晶格完整性,从而提高了PQDs的光电性能,大大减少了陷阱辅助的非辐射复合。因此,PQD太阳能电池的功率转换效率高达18.17%,代表了CsxFA1‐xPbI3 PQD太阳能电池的最高效率。pqd表面晶格的增强抑制了非辐射复合引起的能量损失,从而获得了优异的光电性能。该研究为优化pqd的晶体结构完整性提供了重要的设计原则,也为开发高性能太阳能电池或其他光电子器件铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Dual-Ionic Charge Compensation for CsxFA1-xPbI3 Perovskite Quantum Dot Solar Cells with Over 18% Efficiency

In Situ Dual-Ionic Charge Compensation for CsxFA1-xPbI3 Perovskite Quantum Dot Solar Cells with Over 18% Efficiency

Cesium-formamidinium lead triiodide perovskite quantum dots (CsxFA1-xPbI3 PQDs) receive increasing attention for new-generation solar cells due to their outstanding optoelectronic properties and solution processibility. However, during the synthesis of CsxFA1-xPbI3 PQDs, PQDs seriously suffer from the ligand detachment from the PQD surface under the polar antisolvent, leaving numerous surface vacancies that significantly compromise the surface lattice integrity and optoelectronic properties of PQDs. A facile dual-ionic charge compensation strategy is introduced through the bimolecular nucleophilic substitution (SN2) to reinforce the surface lattice of CsxFA1-xPbI3 PQDs. The dual-ionic ligands produced during the SN2 reaction could in situ fill the surface vacancies of PQDs in the nonpolar solvent, which significantly improves the surface lattice integrity and thus the optoelectronic properties of PQDs, substantially diminishing trap-assisted nonradiative recombination. Consequently, the PQDs solar cells show a power conversion efficiency of up to 18.17%, representing the highest efficiency in CsxFA1-xPbI3 PQD solar cells. The remarkable photovoltaic performance is attributed to the reinforced surface lattice of PQDs, suppressing the energy losses induced by the nonradiative recombination. This study provides crucial design principles for optimizing the crystalline structure integrity of PQDs, which also paves a new avenue for developing high-performance solar cells or other optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信