基于机器学习的二维有机金属硫族化合物电导率预测加速电磁波吸收器设计

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruru Gao, Hongcheng Shang, Qinglin Zhou, Bao-Feng Tan, Xiu-Shen Wei, Jinghui Zhang, Yingzhi Jiao, Weijin Li
{"title":"基于机器学习的二维有机金属硫族化合物电导率预测加速电磁波吸收器设计","authors":"Ruru Gao, Hongcheng Shang, Qinglin Zhou, Bao-Feng Tan, Xiu-Shen Wei, Jinghui Zhang, Yingzhi Jiao, Weijin Li","doi":"10.1021/acsami.5c07554","DOIUrl":null,"url":null,"abstract":"The rational design of electromagnetic wave (EMW) absorbers relies on precise conductivity control, yet conventional trial-and-error methods fail to efficiently explore the multidimensional synthesis parameter space of two-dimensional organic metal chalcogenides (2D OMCs). Here, we propose a machine learning framework that deciphers the nonlinear relationships between synthetic parameters and electrical conductivity in 2D OMCs, enabling quantitative predictions for targeted EMW absorber design. The trained model achieves 86% accuracy in three-level conductivity classification (I: &lt;10<sup>–6</sup> S/m, II: 10<sup>–6</sup>–10<sup>–2</sup> S/m, III: &gt;10<sup>–2</sup> S/m), significantly outperforming empirical approaches. Notably, it demonstrates robust extrapolation capability by correctly predicting 12 out of 15 novel OMCs beyond the training data set. Guided by conductivity predictions, the EMW absorption performance of specific 2D OMCs can be efficiently ranked, accelerating material design with experimentally validated accuracy. This machine learning-assisted strategy reveals the complex relationship between synthesis parameters and conductivity, expediting the design and synthesis of materials with optimized EMW absorption performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"13 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Guided Conductivity Prediction in 2D Organic Metal Chalcogenides for Accelerated Electromagnetic Wave Absorber Design\",\"authors\":\"Ruru Gao, Hongcheng Shang, Qinglin Zhou, Bao-Feng Tan, Xiu-Shen Wei, Jinghui Zhang, Yingzhi Jiao, Weijin Li\",\"doi\":\"10.1021/acsami.5c07554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rational design of electromagnetic wave (EMW) absorbers relies on precise conductivity control, yet conventional trial-and-error methods fail to efficiently explore the multidimensional synthesis parameter space of two-dimensional organic metal chalcogenides (2D OMCs). Here, we propose a machine learning framework that deciphers the nonlinear relationships between synthetic parameters and electrical conductivity in 2D OMCs, enabling quantitative predictions for targeted EMW absorber design. The trained model achieves 86% accuracy in three-level conductivity classification (I: &lt;10<sup>–6</sup> S/m, II: 10<sup>–6</sup>–10<sup>–2</sup> S/m, III: &gt;10<sup>–2</sup> S/m), significantly outperforming empirical approaches. Notably, it demonstrates robust extrapolation capability by correctly predicting 12 out of 15 novel OMCs beyond the training data set. Guided by conductivity predictions, the EMW absorption performance of specific 2D OMCs can be efficiently ranked, accelerating material design with experimentally validated accuracy. This machine learning-assisted strategy reveals the complex relationship between synthesis parameters and conductivity, expediting the design and synthesis of materials with optimized EMW absorption performance.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c07554\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c07554","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电磁波(EMW)吸收剂的合理设计依赖于精确的电导率控制,但传统的试错方法无法有效地探索二维有机金属硫族化合物(2D OMCs)的多维合成参数空间。在这里,我们提出了一个机器学习框架,该框架可以解读二维omc中合成参数与电导率之间的非线性关系,从而能够对目标EMW吸收器设计进行定量预测。训练后的模型在三级电导率分类(I: < 10-6 S/m, II: 10-6-10-2 S/m, III: > 10-2 S/m)中达到86%的准确率,显著优于经验方法。值得注意的是,它通过正确预测超出训练数据集的15个新omc中的12个,展示了强大的外推能力。在电导率预测的指导下,可以有效地对特定2D omc的EMW吸收性能进行排名,从而加速材料设计,并具有实验验证的准确性。这种机器学习辅助策略揭示了合成参数与电导率之间的复杂关系,加速了具有优化EMW吸收性能的材料的设计和合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Guided Conductivity Prediction in 2D Organic Metal Chalcogenides for Accelerated Electromagnetic Wave Absorber Design

Machine Learning-Guided Conductivity Prediction in 2D Organic Metal Chalcogenides for Accelerated Electromagnetic Wave Absorber Design
The rational design of electromagnetic wave (EMW) absorbers relies on precise conductivity control, yet conventional trial-and-error methods fail to efficiently explore the multidimensional synthesis parameter space of two-dimensional organic metal chalcogenides (2D OMCs). Here, we propose a machine learning framework that deciphers the nonlinear relationships between synthetic parameters and electrical conductivity in 2D OMCs, enabling quantitative predictions for targeted EMW absorber design. The trained model achieves 86% accuracy in three-level conductivity classification (I: <10–6 S/m, II: 10–6–10–2 S/m, III: >10–2 S/m), significantly outperforming empirical approaches. Notably, it demonstrates robust extrapolation capability by correctly predicting 12 out of 15 novel OMCs beyond the training data set. Guided by conductivity predictions, the EMW absorption performance of specific 2D OMCs can be efficiently ranked, accelerating material design with experimentally validated accuracy. This machine learning-assisted strategy reveals the complex relationship between synthesis parameters and conductivity, expediting the design and synthesis of materials with optimized EMW absorption performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信