两单元细胞异质结构层之间的强相互作用重新调整了甲醇光合作用缺陷能级

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-18 DOI:10.1021/acsnano.5c06341
Ming Cheng, Ke Wang, Ning Cao, Ying Bao, Mi Yan, Zhenglong Li, Yao Shi, Yi He* and Pengfei Xie*, 
{"title":"两单元细胞异质结构层之间的强相互作用重新调整了甲醇光合作用缺陷能级","authors":"Ming Cheng,&nbsp;Ke Wang,&nbsp;Ning Cao,&nbsp;Ying Bao,&nbsp;Mi Yan,&nbsp;Zhenglong Li,&nbsp;Yao Shi,&nbsp;Yi He* and Pengfei Xie*,&nbsp;","doi":"10.1021/acsnano.5c06341","DOIUrl":null,"url":null,"abstract":"<p >The photocatalytic conversions of CO<sub>2</sub> and H<sub>2</sub>O offer a sustainable approach to provide methanol as a fuel and life-essential O<sub>2</sub>. However, the reaction efficiency is challenged by charge recombination and sluggish reaction kinetics. This work synthesizes single-unit-cell MoS<sub>2–<i>x</i></sub> and organomanganese complex (MnBO) layers. The strong interaction between MoS<sub>2–<i>x</i></sub> and MnBO gives rise to an atomic-layered heterostructure (MnBO/MoS<sub>2–<i>x</i></sub>) with substantial electron transfer through the Mn–S bindings at the interface. This heterostructure achieves a methanol yield of 1.48 mmol g<sup>–1</sup> h<sup>–1</sup> with a selectivity of 99.7% at 50 °C and 0.1 MPa. The analysis reveals that the electron arrangement modulates the defect level in the band of MnBO/MoS<sub>2–<i>x</i></sub> and obtains polarized electrons at high potential, which not only enhances the lifetime of photogenerated charges but also reduces the barriers of CO<sub>2</sub> activation and hydrogenation of *CHO toward methanol. Moreover, outdoor solar-driven measurements with a homemade panel reactor demonstrate a methanol production rate of 143.2 mmol m<sup>–2</sup> per day and a solar-to-methanol efficiency of 0.76% under ∼0.4 sunlight irradiation without secondary energy input.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 25","pages":"23345–23358"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Interaction between Two-Unit-Cell Heterostructure Layers Realigns Defect Energy Level for Methanol Photosynthesis\",\"authors\":\"Ming Cheng,&nbsp;Ke Wang,&nbsp;Ning Cao,&nbsp;Ying Bao,&nbsp;Mi Yan,&nbsp;Zhenglong Li,&nbsp;Yao Shi,&nbsp;Yi He* and Pengfei Xie*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c06341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The photocatalytic conversions of CO<sub>2</sub> and H<sub>2</sub>O offer a sustainable approach to provide methanol as a fuel and life-essential O<sub>2</sub>. However, the reaction efficiency is challenged by charge recombination and sluggish reaction kinetics. This work synthesizes single-unit-cell MoS<sub>2–<i>x</i></sub> and organomanganese complex (MnBO) layers. The strong interaction between MoS<sub>2–<i>x</i></sub> and MnBO gives rise to an atomic-layered heterostructure (MnBO/MoS<sub>2–<i>x</i></sub>) with substantial electron transfer through the Mn–S bindings at the interface. This heterostructure achieves a methanol yield of 1.48 mmol g<sup>–1</sup> h<sup>–1</sup> with a selectivity of 99.7% at 50 °C and 0.1 MPa. The analysis reveals that the electron arrangement modulates the defect level in the band of MnBO/MoS<sub>2–<i>x</i></sub> and obtains polarized electrons at high potential, which not only enhances the lifetime of photogenerated charges but also reduces the barriers of CO<sub>2</sub> activation and hydrogenation of *CHO toward methanol. Moreover, outdoor solar-driven measurements with a homemade panel reactor demonstrate a methanol production rate of 143.2 mmol m<sup>–2</sup> per day and a solar-to-methanol efficiency of 0.76% under ∼0.4 sunlight irradiation without secondary energy input.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 25\",\"pages\":\"23345–23358\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06341\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06341","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳和水的光催化转化提供了一种可持续的方法来提供甲醇作为燃料和生命必需的氧气。然而,反应效率受到电荷重组和反应动力学缓慢的挑战。本工作合成了单细胞MoS2-x和有机锰配合物(MnBO)层。MoS2-x和MnBO之间的强相互作用产生了原子层状异质结构(MnBO/ MoS2-x),并通过界面上的Mn-S键进行了大量的电子转移。该异质结构在50℃、0.1 MPa条件下的甲醇收率为1.48 mmol g-1 h-1,选择性为99.7%。分析表明,电子的排列调节了MnBO/ MoS2-x带的缺陷水平,并在高电位下获得极化电子,这不仅提高了光生电荷的寿命,而且降低了CO2活化和*CHO对甲醇加氢的障碍。此外,使用自制面板反应器进行的室外太阳能驱动测量表明,在没有二次能量输入的~ 0.4阳光照射下,甲醇的产率为每天143.2 mmol m-2,太阳能转化为甲醇的效率为0.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong Interaction between Two-Unit-Cell Heterostructure Layers Realigns Defect Energy Level for Methanol Photosynthesis

Strong Interaction between Two-Unit-Cell Heterostructure Layers Realigns Defect Energy Level for Methanol Photosynthesis

Strong Interaction between Two-Unit-Cell Heterostructure Layers Realigns Defect Energy Level for Methanol Photosynthesis

The photocatalytic conversions of CO2 and H2O offer a sustainable approach to provide methanol as a fuel and life-essential O2. However, the reaction efficiency is challenged by charge recombination and sluggish reaction kinetics. This work synthesizes single-unit-cell MoS2–x and organomanganese complex (MnBO) layers. The strong interaction between MoS2–x and MnBO gives rise to an atomic-layered heterostructure (MnBO/MoS2–x) with substantial electron transfer through the Mn–S bindings at the interface. This heterostructure achieves a methanol yield of 1.48 mmol g–1 h–1 with a selectivity of 99.7% at 50 °C and 0.1 MPa. The analysis reveals that the electron arrangement modulates the defect level in the band of MnBO/MoS2–x and obtains polarized electrons at high potential, which not only enhances the lifetime of photogenerated charges but also reduces the barriers of CO2 activation and hydrogenation of *CHO toward methanol. Moreover, outdoor solar-driven measurements with a homemade panel reactor demonstrate a methanol production rate of 143.2 mmol m–2 per day and a solar-to-methanol efficiency of 0.76% under ∼0.4 sunlight irradiation without secondary energy input.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信