跨代和代内的社会刚性:一种预测方法

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
Haowen Zheng, Siwei Cheng
{"title":"跨代和代内的社会刚性:一种预测方法","authors":"Haowen Zheng, Siwei Cheng","doi":"10.1177/00491241251347984","DOIUrl":null,"url":null,"abstract":"How well can individuals’ parental background and previous life experiences predict their mid-life socioeconomic status (SES) attainment? This question is central to stratification research, as a strong power of earlier experiences in predicting later-life outcomes signals substantial intra- or intergenerational status persistence, or put simply, social rigidity. Running machine learning models on panel data to predict outcomes that include hourly wage, total income, family income, and occupational status, we find that a large number (around 4,000) of predictors commonly used in the stratification literature improves the prediction of one’s life chances in middle to late adulthood by about 10 percent to 50 percent, compared with a null model that uses a simple mean of the outcome variable. The level of predictability depends on the specific outcome being analyzed, with labor market indicators like wages and occupational prestige being more predictable than broader socioeconomic measures such as overall personal and family income. Grouping a comprehensive list of predictors into four unique sets that cover family background, childhood and adolescence development, early labor market experiences, and early adulthood family formation, we find that including income, employment status, and occupational characteristics at early career significantly improves models’ prediction accuracy for mid-life SES attainment. We also illustrate the application of the predictive models to examine heterogeneity in predictability by race and gender and identify important variables through this data-driven exercise.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"51 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Rigidity Across and Within Generations: A Predictive Approach\",\"authors\":\"Haowen Zheng, Siwei Cheng\",\"doi\":\"10.1177/00491241251347984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How well can individuals’ parental background and previous life experiences predict their mid-life socioeconomic status (SES) attainment? This question is central to stratification research, as a strong power of earlier experiences in predicting later-life outcomes signals substantial intra- or intergenerational status persistence, or put simply, social rigidity. Running machine learning models on panel data to predict outcomes that include hourly wage, total income, family income, and occupational status, we find that a large number (around 4,000) of predictors commonly used in the stratification literature improves the prediction of one’s life chances in middle to late adulthood by about 10 percent to 50 percent, compared with a null model that uses a simple mean of the outcome variable. The level of predictability depends on the specific outcome being analyzed, with labor market indicators like wages and occupational prestige being more predictable than broader socioeconomic measures such as overall personal and family income. Grouping a comprehensive list of predictors into four unique sets that cover family background, childhood and adolescence development, early labor market experiences, and early adulthood family formation, we find that including income, employment status, and occupational characteristics at early career significantly improves models’ prediction accuracy for mid-life SES attainment. We also illustrate the application of the predictive models to examine heterogeneity in predictability by race and gender and identify important variables through this data-driven exercise.\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00491241251347984\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241251347984","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

个人的父母背景和以前的生活经历如何预测他们的中年社会经济地位(SES)的成就?这个问题是分层研究的核心,因为早期的经历在预测晚年生活结果方面具有强大的力量,表明了实质性的代际或代际地位的持久性,或者简单地说,社会刚性。在面板数据上运行机器学习模型来预测包括小时工资、总收入、家庭收入和职业状况在内的结果,我们发现,与使用结果变量的简单平均值的零模型相比,分层文献中常用的大量(约4,000)预测因子将对一个人在成年中后期的生活机会的预测提高了约10%至50%。可预测性的程度取决于所分析的具体结果,工资和职业声望等劳动力市场指标比个人和家庭总收入等更广泛的社会经济指标更可预测。我们将综合的预测因子列表分为四个独特的集合,包括家庭背景、儿童和青少年发展、早期劳动力市场经历和成年早期家庭形成,我们发现,包括收入、就业状况和职业早期职业特征显著提高了模型对中年SES成就的预测准确性。我们还说明了预测模型的应用,以检查种族和性别可预测性的异质性,并通过这种数据驱动的练习确定重要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Rigidity Across and Within Generations: A Predictive Approach
How well can individuals’ parental background and previous life experiences predict their mid-life socioeconomic status (SES) attainment? This question is central to stratification research, as a strong power of earlier experiences in predicting later-life outcomes signals substantial intra- or intergenerational status persistence, or put simply, social rigidity. Running machine learning models on panel data to predict outcomes that include hourly wage, total income, family income, and occupational status, we find that a large number (around 4,000) of predictors commonly used in the stratification literature improves the prediction of one’s life chances in middle to late adulthood by about 10 percent to 50 percent, compared with a null model that uses a simple mean of the outcome variable. The level of predictability depends on the specific outcome being analyzed, with labor market indicators like wages and occupational prestige being more predictable than broader socioeconomic measures such as overall personal and family income. Grouping a comprehensive list of predictors into four unique sets that cover family background, childhood and adolescence development, early labor market experiences, and early adulthood family formation, we find that including income, employment status, and occupational characteristics at early career significantly improves models’ prediction accuracy for mid-life SES attainment. We also illustrate the application of the predictive models to examine heterogeneity in predictability by race and gender and identify important variables through this data-driven exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信