Jiaxi Sui, Hao Sun, Fengge Wang, Qiwen Zhang, Shilin Ling, Yali Li, Zhenghan Zhang, Jun Zhong, Xiaoxiao Huang, Bo Zhong, Xiaoyan Luo
{"title":"缺陷的K2Ti8O17纳米棒支持通过限制工程IrOx实现稳定的高电流密度酸性电解","authors":"Jiaxi Sui, Hao Sun, Fengge Wang, Qiwen Zhang, Shilin Ling, Yali Li, Zhenghan Zhang, Jun Zhong, Xiaoxiao Huang, Bo Zhong, Xiaoyan Luo","doi":"10.1002/smll.202505131","DOIUrl":null,"url":null,"abstract":"This study tackles the dual challenges of sluggish oxygen evolution reaction (OER) kinetics and excessive iridium loading in proton exchange membrane water electrolysis (PEMWE) via rational catalyst design. Through a rapid synthesis strategy, it is anchored ultrafine IrO<jats:sub>x</jats:sub> nanoparticles (<3 nm) on K<jats:sub>2</jats:sub>Ti<jats:sub>8</jats:sub>O<jats:sub>17</jats:sub> (KTO), achieving exceptional acidic OER activity with ultra‐low Ir content (10.89 wt.%). The IrO<jats:sub>x</jats:sub>/KTO‐1 catalyst exhibits 4.4× higher mass activity than IrO<jats:sub>2</jats:sub> in acidic OER. In PEMWE cells, it delivers 3 A cm<jats:sup>−2</jats:sup> at 1.79 V (44.0 kWh kg<jats:sup>−1</jats:sup>) and sustains >550 h at 1000 mA cm<jats:sup>−2</jats:sup> (H<jats:sub>2</jats:sub> cost: $0.88 kg<jats:sup>−1</jats:sup>, 56% below US‐DOE 2026 target). Crucially, it maintains stability for 500 h at 3000 mA cm<jats:sup>−2</jats:sup> and strong operational reliability under volatile renewable energy inputs, showcasing its potential for industrial‐scale implementation. In situ Raman spectroscopy, X‐ray analyses, and DFT calculations reveal that interfacial charge redistribution between KTO and sub‐nano IrO<jats:sub>x</jats:sub> dynamically activates Ir sites during OER, accelerates charge transfer, and reduces the OER reaction barrier. The synergy of size‐controlled active sites and defect‐mediated electronic modulation enables simultaneous high activity, stability, and industrial current density tolerance. This work establishes a paradigm for designing confinement‐stabilized nanocatalysts toward practical green hydrogen production.","PeriodicalId":228,"journal":{"name":"Small","volume":"12 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective K2Ti8O17 Nanorod Supports Enable Stable High‐Current‐Density Acidic Water Electrolysis via Confinement‐Engineered IrOx\",\"authors\":\"Jiaxi Sui, Hao Sun, Fengge Wang, Qiwen Zhang, Shilin Ling, Yali Li, Zhenghan Zhang, Jun Zhong, Xiaoxiao Huang, Bo Zhong, Xiaoyan Luo\",\"doi\":\"10.1002/smll.202505131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study tackles the dual challenges of sluggish oxygen evolution reaction (OER) kinetics and excessive iridium loading in proton exchange membrane water electrolysis (PEMWE) via rational catalyst design. Through a rapid synthesis strategy, it is anchored ultrafine IrO<jats:sub>x</jats:sub> nanoparticles (<3 nm) on K<jats:sub>2</jats:sub>Ti<jats:sub>8</jats:sub>O<jats:sub>17</jats:sub> (KTO), achieving exceptional acidic OER activity with ultra‐low Ir content (10.89 wt.%). The IrO<jats:sub>x</jats:sub>/KTO‐1 catalyst exhibits 4.4× higher mass activity than IrO<jats:sub>2</jats:sub> in acidic OER. In PEMWE cells, it delivers 3 A cm<jats:sup>−2</jats:sup> at 1.79 V (44.0 kWh kg<jats:sup>−1</jats:sup>) and sustains >550 h at 1000 mA cm<jats:sup>−2</jats:sup> (H<jats:sub>2</jats:sub> cost: $0.88 kg<jats:sup>−1</jats:sup>, 56% below US‐DOE 2026 target). Crucially, it maintains stability for 500 h at 3000 mA cm<jats:sup>−2</jats:sup> and strong operational reliability under volatile renewable energy inputs, showcasing its potential for industrial‐scale implementation. In situ Raman spectroscopy, X‐ray analyses, and DFT calculations reveal that interfacial charge redistribution between KTO and sub‐nano IrO<jats:sub>x</jats:sub> dynamically activates Ir sites during OER, accelerates charge transfer, and reduces the OER reaction barrier. The synergy of size‐controlled active sites and defect‐mediated electronic modulation enables simultaneous high activity, stability, and industrial current density tolerance. This work establishes a paradigm for designing confinement‐stabilized nanocatalysts toward practical green hydrogen production.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202505131\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202505131","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过合理的催化剂设计,解决了质子交换膜电解(PEMWE)过程中析氧反应(OER)动力学缓慢和铱负载过多的双重挑战。通过快速合成策略,将超细IrOx纳米颗粒(< 3nm)锚定在K2Ti8O17 (KTO)上,在超低Ir含量(10.89 wt.%)下实现了优异的酸性OER活性。在酸性OER中,IrOx/KTO‐1催化剂的质量活性比IrO2高4.4倍。在PEMWE电池中,它在1.79 V (44.0 kWh kg - 1)下输出3 A cm - 2,在1000 mA cm - 2下维持550小时(H2成本:0.88 kg - 1美元,比美国能源部2026年目标低56%)。最重要的是,它在3000毫安厘米−2下保持500小时的稳定性,并且在不稳定的可再生能源输入下具有很强的运行可靠性,显示了其工业规模实施的潜力。原位拉曼光谱、X射线分析和DFT计算表明,KTO和亚纳米IrOx之间的界面电荷重新分配在OER过程中动态激活了Ir位点,加速了电荷转移,降低了OER反应势垒。尺寸控制的活性位点和缺陷介导的电子调制的协同作用可以同时实现高活性、稳定性和工业电流密度容限。这项工作为设计约束稳定的纳米催化剂以实现实际的绿色制氢建立了一个范例。
Defective K2Ti8O17 Nanorod Supports Enable Stable High‐Current‐Density Acidic Water Electrolysis via Confinement‐Engineered IrOx
This study tackles the dual challenges of sluggish oxygen evolution reaction (OER) kinetics and excessive iridium loading in proton exchange membrane water electrolysis (PEMWE) via rational catalyst design. Through a rapid synthesis strategy, it is anchored ultrafine IrOx nanoparticles (<3 nm) on K2Ti8O17 (KTO), achieving exceptional acidic OER activity with ultra‐low Ir content (10.89 wt.%). The IrOx/KTO‐1 catalyst exhibits 4.4× higher mass activity than IrO2 in acidic OER. In PEMWE cells, it delivers 3 A cm−2 at 1.79 V (44.0 kWh kg−1) and sustains >550 h at 1000 mA cm−2 (H2 cost: $0.88 kg−1, 56% below US‐DOE 2026 target). Crucially, it maintains stability for 500 h at 3000 mA cm−2 and strong operational reliability under volatile renewable energy inputs, showcasing its potential for industrial‐scale implementation. In situ Raman spectroscopy, X‐ray analyses, and DFT calculations reveal that interfacial charge redistribution between KTO and sub‐nano IrOx dynamically activates Ir sites during OER, accelerates charge transfer, and reduces the OER reaction barrier. The synergy of size‐controlled active sites and defect‐mediated electronic modulation enables simultaneous high activity, stability, and industrial current density tolerance. This work establishes a paradigm for designing confinement‐stabilized nanocatalysts toward practical green hydrogen production.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.