锌铁液流电池中C─O─Cu桥接键增强碳纤维上的CuZn涂层

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-19 DOI:10.1002/smll.202505164
Wei Li, Xiong Dan, Qinglin Wen, Can He, Ali Hammad, Fandi Ning, Yiyang Liu, Xingyu Zhu, Wentao Huang, Siyi Zou, Jiahao Huang, Xiaochun Zhou
{"title":"锌铁液流电池中C─O─Cu桥接键增强碳纤维上的CuZn涂层","authors":"Wei Li, Xiong Dan, Qinglin Wen, Can He, Ali Hammad, Fandi Ning, Yiyang Liu, Xingyu Zhu, Wentao Huang, Siyi Zou, Jiahao Huang, Xiaochun Zhou","doi":"10.1002/smll.202505164","DOIUrl":null,"url":null,"abstract":"Zinc‐based flow batteries (ZFBs) are promising for grid‐scale energy storage due to their high energy density, low cost, and safety. However, uneven zinc plating, dendrite formation, and limited areal capacity in Zn anodes remain significant challenges. To address these issues, carbon felt (CF) electrodes are functionalized with oxygen‐containing groups to form stable C─O─Cu bridging bonds, which enhance the adhesion of CuZn to CF. This modification promotes uniform deposition of a CuZn alloy layer on the carbon fibers, which increases zinc adsorption and ensures consistent zinc deposition, effectively suppressing dendrite growth. In zinc‐iron flow batteries, the CuZn‐coated carbon felt (CF‐CuZn) electrode achieves stable cycling with an average coulombic efficiency of 99.7% and a high areal capacity of 180 mAh cm<jats:sup>−2</jats:sup>. This work introduces a scalable strategy that surpasses conventional methods in improving zinc deposition uniformity and dendrite suppression, offering durable, high‐performance zinc anodes for grid‐scale energy storage applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"44 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CuZn Coating on Carbon Fibers Through C─O─Cu Bridging Bond for Homogeneous Zinc Deposition in Zinc‐Iron Flow Batteries\",\"authors\":\"Wei Li, Xiong Dan, Qinglin Wen, Can He, Ali Hammad, Fandi Ning, Yiyang Liu, Xingyu Zhu, Wentao Huang, Siyi Zou, Jiahao Huang, Xiaochun Zhou\",\"doi\":\"10.1002/smll.202505164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc‐based flow batteries (ZFBs) are promising for grid‐scale energy storage due to their high energy density, low cost, and safety. However, uneven zinc plating, dendrite formation, and limited areal capacity in Zn anodes remain significant challenges. To address these issues, carbon felt (CF) electrodes are functionalized with oxygen‐containing groups to form stable C─O─Cu bridging bonds, which enhance the adhesion of CuZn to CF. This modification promotes uniform deposition of a CuZn alloy layer on the carbon fibers, which increases zinc adsorption and ensures consistent zinc deposition, effectively suppressing dendrite growth. In zinc‐iron flow batteries, the CuZn‐coated carbon felt (CF‐CuZn) electrode achieves stable cycling with an average coulombic efficiency of 99.7% and a high areal capacity of 180 mAh cm<jats:sup>−2</jats:sup>. This work introduces a scalable strategy that surpasses conventional methods in improving zinc deposition uniformity and dendrite suppression, offering durable, high‐performance zinc anodes for grid‐scale energy storage applications.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202505164\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202505164","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌基液流电池(ZFBs)由于其高能量密度、低成本和安全性,在电网规模储能方面具有很大的前景。然而,不均匀的锌镀层、枝晶的形成和锌阳极面积容量有限仍然是重大的挑战。为了解决这些问题,碳毡(CF)电极被含氧基团官能化,形成稳定的C─O─Cu桥接键,从而增强了CuZn与CF的附着力。这种改性促进了碳纤维上CuZn合金层的均匀沉积,从而增加了锌的吸附,确保了锌沉积的一致性,有效地抑制了枝晶的生长。在锌铁液流电池中,cu - zn涂层碳毡(CF - cu - zn)电极实现了稳定的循环,平均库仑效率为99.7%,面积容量为180 mAh cm - 2。这项工作介绍了一种可扩展的策略,在改善锌沉积均匀性和枝晶抑制方面超越了传统方法,为电网规模的储能应用提供了耐用、高性能的锌阳极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced CuZn Coating on Carbon Fibers Through C─O─Cu Bridging Bond for Homogeneous Zinc Deposition in Zinc‐Iron Flow Batteries
Zinc‐based flow batteries (ZFBs) are promising for grid‐scale energy storage due to their high energy density, low cost, and safety. However, uneven zinc plating, dendrite formation, and limited areal capacity in Zn anodes remain significant challenges. To address these issues, carbon felt (CF) electrodes are functionalized with oxygen‐containing groups to form stable C─O─Cu bridging bonds, which enhance the adhesion of CuZn to CF. This modification promotes uniform deposition of a CuZn alloy layer on the carbon fibers, which increases zinc adsorption and ensures consistent zinc deposition, effectively suppressing dendrite growth. In zinc‐iron flow batteries, the CuZn‐coated carbon felt (CF‐CuZn) electrode achieves stable cycling with an average coulombic efficiency of 99.7% and a high areal capacity of 180 mAh cm−2. This work introduces a scalable strategy that surpasses conventional methods in improving zinc deposition uniformity and dendrite suppression, offering durable, high‐performance zinc anodes for grid‐scale energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信