{"title":"离子电子热传感器用氯化锂/聚乙烯醇固体聚合物电解质电化学电容器","authors":"Libu Manjakkal, Chandini Kumar, Mustehsan Beg, Amith Mathew, Jeeva Saju, Febin Paul, Prasutha Rani Markapudi","doi":"10.1016/j.electacta.2025.146740","DOIUrl":null,"url":null,"abstract":"<div><div>This paper describes an ionotronic-based sensor that can detect changes in temperature using a solid polymer electrolyte (SPE)-based transparent electrochemical capacitor (EC). The EC developed using flexible ITO as an active electrode and polyvinyl alcohol (PVA)- lithium chloride (LiCl) gel composite-based SPE. The electrochemical performances of the sensors are investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charging and discharging (GCD) analysis. The EC was fabricated using a freestanding SPE, which exhibits a specific capacitance of 4.19 μF. cm<sup>-</sup>² at a scan rate of 5 mV. s<sup>-1</sup>. The direct coating of the SPE on the electrode enhances the specific capacitance and is found to be 18.70 μF.cm<sup>-</sup>², which is 12 times higher than the EC fabricated using freestanding SPE. When a temperature was applied to the top of the EC with directly coated SPE, we observed a variation in the device’s capacitance due to the change in the mobility of ions of the SPE, which is directly related to the temperature change. The EC exhibits a sensitivity of 0.30 µF/ °C (R<sup>2</sup>= 0.9694) for the temperature range of -10 to 50 °C. Due to its ionic reaction, the EC demonstrates a high capacitance value in the range of µF in the low frequency range, which shows its potential application in ionotronic-based sensing and as an energy storage for the next generation of wearable devices.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"536 ","pages":"Article 146740"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical capacitors with lithium chloride/polyvinyl alcohol solid polymer electrolyte for ionotronic-based thermal sensors\",\"authors\":\"Libu Manjakkal, Chandini Kumar, Mustehsan Beg, Amith Mathew, Jeeva Saju, Febin Paul, Prasutha Rani Markapudi\",\"doi\":\"10.1016/j.electacta.2025.146740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper describes an ionotronic-based sensor that can detect changes in temperature using a solid polymer electrolyte (SPE)-based transparent electrochemical capacitor (EC). The EC developed using flexible ITO as an active electrode and polyvinyl alcohol (PVA)- lithium chloride (LiCl) gel composite-based SPE. The electrochemical performances of the sensors are investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charging and discharging (GCD) analysis. The EC was fabricated using a freestanding SPE, which exhibits a specific capacitance of 4.19 μF. cm<sup>-</sup>² at a scan rate of 5 mV. s<sup>-1</sup>. The direct coating of the SPE on the electrode enhances the specific capacitance and is found to be 18.70 μF.cm<sup>-</sup>², which is 12 times higher than the EC fabricated using freestanding SPE. When a temperature was applied to the top of the EC with directly coated SPE, we observed a variation in the device’s capacitance due to the change in the mobility of ions of the SPE, which is directly related to the temperature change. The EC exhibits a sensitivity of 0.30 µF/ °C (R<sup>2</sup>= 0.9694) for the temperature range of -10 to 50 °C. Due to its ionic reaction, the EC demonstrates a high capacitance value in the range of µF in the low frequency range, which shows its potential application in ionotronic-based sensing and as an energy storage for the next generation of wearable devices.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"536 \",\"pages\":\"Article 146740\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625011016\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625011016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical capacitors with lithium chloride/polyvinyl alcohol solid polymer electrolyte for ionotronic-based thermal sensors
This paper describes an ionotronic-based sensor that can detect changes in temperature using a solid polymer electrolyte (SPE)-based transparent electrochemical capacitor (EC). The EC developed using flexible ITO as an active electrode and polyvinyl alcohol (PVA)- lithium chloride (LiCl) gel composite-based SPE. The electrochemical performances of the sensors are investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charging and discharging (GCD) analysis. The EC was fabricated using a freestanding SPE, which exhibits a specific capacitance of 4.19 μF. cm-² at a scan rate of 5 mV. s-1. The direct coating of the SPE on the electrode enhances the specific capacitance and is found to be 18.70 μF.cm-², which is 12 times higher than the EC fabricated using freestanding SPE. When a temperature was applied to the top of the EC with directly coated SPE, we observed a variation in the device’s capacitance due to the change in the mobility of ions of the SPE, which is directly related to the temperature change. The EC exhibits a sensitivity of 0.30 µF/ °C (R2= 0.9694) for the temperature range of -10 to 50 °C. Due to its ionic reaction, the EC demonstrates a high capacitance value in the range of µF in the low frequency range, which shows its potential application in ionotronic-based sensing and as an energy storage for the next generation of wearable devices.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.