Chiara Daldossi, Cristiana Di Valentin, Annabella Selloni
{"title":"甲酸在干燥和水合锐钛矿TiO2表面的光催化氧化途径","authors":"Chiara Daldossi, Cristiana Di Valentin, Annabella Selloni","doi":"10.1021/acscatal.5c01848","DOIUrl":null,"url":null,"abstract":"The photocatalytic oxidation of formic acid (FA), which is one of the most abundant volatile organic compounds, is a promising air remediation technology inspired by nature. However, the detailed mechanism of this photocatalytic reaction on the surface of TiO<sub>2</sub>, a typical photocatalyst, is not yet well-understood. In this work, we present a computational mechanistic study of the thermal vs photocatalytic oxidation of FA on dry and hydrated anatase TiO<sub>2</sub> (101) surfaces, based on periodic hybrid density functional theory (DFT) calculations, in which the photo-oxidation is treated as an excited-state process in a constrained triplet spin state. We first compare the adsorption modes of FA on the anatase (101) surface in the ground and excited states, followed by identification of the corresponding reaction intermediates that lead to the formation of CO<sub>2</sub>. We unveil the pivotal role of photogenerated holes localized at surface under-coordinated oxygen sites in mediating the C–H bond cleavage, thereby promoting CO<sub>2</sub> formation through a highly stable intermediate and an exergonic reaction step. Further investigation of the effect of coadsorbed water molecules shows that hydrogen bonding with water stabilizes FA in a monodentate configuration. This is favored over the unreactive bidentate structure that is the most stable under dry conditions, thus providing insight into the experimentally observed increase of the reaction rate in the presence of water.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"44 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathways of Photocatalytic Oxidation of Formic Acid on Dry and Hydrated Anatase TiO2 Surfaces\",\"authors\":\"Chiara Daldossi, Cristiana Di Valentin, Annabella Selloni\",\"doi\":\"10.1021/acscatal.5c01848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photocatalytic oxidation of formic acid (FA), which is one of the most abundant volatile organic compounds, is a promising air remediation technology inspired by nature. However, the detailed mechanism of this photocatalytic reaction on the surface of TiO<sub>2</sub>, a typical photocatalyst, is not yet well-understood. In this work, we present a computational mechanistic study of the thermal vs photocatalytic oxidation of FA on dry and hydrated anatase TiO<sub>2</sub> (101) surfaces, based on periodic hybrid density functional theory (DFT) calculations, in which the photo-oxidation is treated as an excited-state process in a constrained triplet spin state. We first compare the adsorption modes of FA on the anatase (101) surface in the ground and excited states, followed by identification of the corresponding reaction intermediates that lead to the formation of CO<sub>2</sub>. We unveil the pivotal role of photogenerated holes localized at surface under-coordinated oxygen sites in mediating the C–H bond cleavage, thereby promoting CO<sub>2</sub> formation through a highly stable intermediate and an exergonic reaction step. Further investigation of the effect of coadsorbed water molecules shows that hydrogen bonding with water stabilizes FA in a monodentate configuration. This is favored over the unreactive bidentate structure that is the most stable under dry conditions, thus providing insight into the experimentally observed increase of the reaction rate in the presence of water.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.5c01848\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c01848","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Pathways of Photocatalytic Oxidation of Formic Acid on Dry and Hydrated Anatase TiO2 Surfaces
The photocatalytic oxidation of formic acid (FA), which is one of the most abundant volatile organic compounds, is a promising air remediation technology inspired by nature. However, the detailed mechanism of this photocatalytic reaction on the surface of TiO2, a typical photocatalyst, is not yet well-understood. In this work, we present a computational mechanistic study of the thermal vs photocatalytic oxidation of FA on dry and hydrated anatase TiO2 (101) surfaces, based on periodic hybrid density functional theory (DFT) calculations, in which the photo-oxidation is treated as an excited-state process in a constrained triplet spin state. We first compare the adsorption modes of FA on the anatase (101) surface in the ground and excited states, followed by identification of the corresponding reaction intermediates that lead to the formation of CO2. We unveil the pivotal role of photogenerated holes localized at surface under-coordinated oxygen sites in mediating the C–H bond cleavage, thereby promoting CO2 formation through a highly stable intermediate and an exergonic reaction step. Further investigation of the effect of coadsorbed water molecules shows that hydrogen bonding with water stabilizes FA in a monodentate configuration. This is favored over the unreactive bidentate structure that is the most stable under dry conditions, thus providing insight into the experimentally observed increase of the reaction rate in the presence of water.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.