真核转录因子co-TF依赖性的分化涉及多个内在无序区域

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lindsey F. Snyder, Emily M. O’Brien, Jia Zhao, Jinye Liang, Baylee J. Bruce, Yuning Zhang, Wei Zhu, Thomas H. Cassier, Nicholas J. Schnicker, Xu Zhou, Raluca Gordân, Bin Z. He
{"title":"真核转录因子co-TF依赖性的分化涉及多个内在无序区域","authors":"Lindsey F. Snyder, Emily M. O’Brien, Jia Zhao, Jinye Liang, Baylee J. Bruce, Yuning Zhang, Wei Zhu, Thomas H. Cassier, Nicholas J. Schnicker, Xu Zhou, Raluca Gordân, Bin Z. He","doi":"10.1038/s41467-025-59244-w","DOIUrl":null,"url":null,"abstract":"<p>Combinatorial control by transcription factors (TFs) is central to eukaryotic gene regulation, yet its mechanism, evolution, and regulatory impact are not well understood. Here we use natural variation in the yeast phosphate starvation (PHO) response to examine the genetic basis and species variation in TF interdependence. In <i>Saccharomyces cerevisiae</i>, the main TF Pho4 relies on the co-TF Pho2 to regulate ~28 genes, whereas in the related pathogen <i>Candida glabrata</i>, Pho4 has reduced Pho2 dependence and regulates ~70 genes. We found <i>C. glabrata</i> Pho4 (CgPho4) binds the same motif with 3–4 fold higher affinity. Machine learning and yeast one-hybrid assay identify two intrinsically disordered regions (IDRs) in CgPho4 that boost its activation domain’s activity. In ScPho4, an IDR next to the DNA binding domain both allows for enhanced activity with Pho2 and inhibits activity without Pho2. This study reveals how IDR divergence drives TF interdependence evolution by influencing activation potential and autoinhibition.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"145 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergence in a eukaryotic transcription factor’s co-TF dependence involves multiple intrinsically disordered regions\",\"authors\":\"Lindsey F. Snyder, Emily M. O’Brien, Jia Zhao, Jinye Liang, Baylee J. Bruce, Yuning Zhang, Wei Zhu, Thomas H. Cassier, Nicholas J. Schnicker, Xu Zhou, Raluca Gordân, Bin Z. He\",\"doi\":\"10.1038/s41467-025-59244-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Combinatorial control by transcription factors (TFs) is central to eukaryotic gene regulation, yet its mechanism, evolution, and regulatory impact are not well understood. Here we use natural variation in the yeast phosphate starvation (PHO) response to examine the genetic basis and species variation in TF interdependence. In <i>Saccharomyces cerevisiae</i>, the main TF Pho4 relies on the co-TF Pho2 to regulate ~28 genes, whereas in the related pathogen <i>Candida glabrata</i>, Pho4 has reduced Pho2 dependence and regulates ~70 genes. We found <i>C. glabrata</i> Pho4 (CgPho4) binds the same motif with 3–4 fold higher affinity. Machine learning and yeast one-hybrid assay identify two intrinsically disordered regions (IDRs) in CgPho4 that boost its activation domain’s activity. In ScPho4, an IDR next to the DNA binding domain both allows for enhanced activity with Pho2 and inhibits activity without Pho2. This study reveals how IDR divergence drives TF interdependence evolution by influencing activation potential and autoinhibition.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-59244-w\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59244-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

转录因子(tf)的组合控制是真核生物基因调控的核心,但其机制、进化和调控作用尚不清楚。在这里,我们利用酵母磷酸盐饥饿(PHO)反应的自然变异来研究TF相互依赖的遗传基础和物种变异。在酿酒酵母中,主TF Pho4依赖于co-TF Pho2调控约28个基因,而在相关病原菌光秃念珠菌中,Pho4降低了Pho2依赖性,调控约70个基因。我们发现C. glabrata Pho4 (CgPho4)结合相同基序的亲和力高3-4倍。机器学习和酵母单杂交实验鉴定了CgPho4中两个增强其激活域活性的内在无序区(IDRs)。在ScPho4中,DNA结合域旁边的IDR既可以增强Pho2的活性,又可以抑制没有Pho2的活性。本研究揭示了IDR分化如何通过影响激活电位和自抑制来驱动TF相互依赖进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Divergence in a eukaryotic transcription factor’s co-TF dependence involves multiple intrinsically disordered regions

Divergence in a eukaryotic transcription factor’s co-TF dependence involves multiple intrinsically disordered regions

Combinatorial control by transcription factors (TFs) is central to eukaryotic gene regulation, yet its mechanism, evolution, and regulatory impact are not well understood. Here we use natural variation in the yeast phosphate starvation (PHO) response to examine the genetic basis and species variation in TF interdependence. In Saccharomyces cerevisiae, the main TF Pho4 relies on the co-TF Pho2 to regulate ~28 genes, whereas in the related pathogen Candida glabrata, Pho4 has reduced Pho2 dependence and regulates ~70 genes. We found C. glabrata Pho4 (CgPho4) binds the same motif with 3–4 fold higher affinity. Machine learning and yeast one-hybrid assay identify two intrinsically disordered regions (IDRs) in CgPho4 that boost its activation domain’s activity. In ScPho4, an IDR next to the DNA binding domain both allows for enhanced activity with Pho2 and inhibits activity without Pho2. This study reveals how IDR divergence drives TF interdependence evolution by influencing activation potential and autoinhibition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信