Trisha Jha, Omid G Sani, Bijan Pesaran, Maryam M Shanechi
{"title":"跨种群神经动力学的优先学习。","authors":"Trisha Jha, Omid G Sani, Bijan Pesaran, Maryam M Shanechi","doi":"10.1088/1741-2552/ade569","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics.<i>Approach</i>. Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal.<i>Main results</i>. First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recordings during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner.<i>Significance</i>. Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prioritized learning of cross-population neural dynamics.\",\"authors\":\"Trisha Jha, Omid G Sani, Bijan Pesaran, Maryam M Shanechi\",\"doi\":\"10.1088/1741-2552/ade569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics.<i>Approach</i>. Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal.<i>Main results</i>. First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recordings during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner.<i>Significance</i>. Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12337745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ade569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prioritized learning of cross-population neural dynamics.
Objective. Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics.Approach. Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal.Main results. First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recordings during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner.Significance. Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.