{"title":"锰在健康和疾病。","authors":"Yingchen Wang, Jinyou Li, Jing Zhuang, Yinhang Wu, Jiang Liu, Shuwen Han","doi":"10.1017/S0954422425100139","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese (Mn) is a crucial trace element that actively participates in a diverse array of physiological processes. Mn is maintained at appropriate levels in the body by absorption and excretion by the body. Dysregulation of Mn homeostasis can lead to a variety of diseases, especially the accumulation of Mn in the brain, resulting in toxic side effects. We reviewed the metabolism and distribution of Mn at multiple levels, including organ, cellular, and sub-cell levels. Mitochondria are the main sites of Mn metabolism and energy conversion in cells. Enhanced Mn superoxide dismutase activity reduces mitochondrial oxidative stress and inhibits cancer development. In addition, Mn enhances anticancer immune responses through the cGAS-STING pathway. We introduced various delivery vectors for Mn delivery to cancer sites for Mn supplementation and anti-cancer immunity. This review aims to provide new research perspectives for the application of Mn in the prevention and treatment of human diseases, especially by enhancing anticancer immune responses to inhibit cancer progression.</p>","PeriodicalId":54703,"journal":{"name":"Nutrition Research Reviews","volume":" ","pages":"1-41"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese in health and disease.\",\"authors\":\"Yingchen Wang, Jinyou Li, Jing Zhuang, Yinhang Wu, Jiang Liu, Shuwen Han\",\"doi\":\"10.1017/S0954422425100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manganese (Mn) is a crucial trace element that actively participates in a diverse array of physiological processes. Mn is maintained at appropriate levels in the body by absorption and excretion by the body. Dysregulation of Mn homeostasis can lead to a variety of diseases, especially the accumulation of Mn in the brain, resulting in toxic side effects. We reviewed the metabolism and distribution of Mn at multiple levels, including organ, cellular, and sub-cell levels. Mitochondria are the main sites of Mn metabolism and energy conversion in cells. Enhanced Mn superoxide dismutase activity reduces mitochondrial oxidative stress and inhibits cancer development. In addition, Mn enhances anticancer immune responses through the cGAS-STING pathway. We introduced various delivery vectors for Mn delivery to cancer sites for Mn supplementation and anti-cancer immunity. This review aims to provide new research perspectives for the application of Mn in the prevention and treatment of human diseases, especially by enhancing anticancer immune responses to inhibit cancer progression.</p>\",\"PeriodicalId\":54703,\"journal\":{\"name\":\"Nutrition Research Reviews\",\"volume\":\" \",\"pages\":\"1-41\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0954422425100139\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0954422425100139","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Manganese (Mn) is a crucial trace element that actively participates in a diverse array of physiological processes. Mn is maintained at appropriate levels in the body by absorption and excretion by the body. Dysregulation of Mn homeostasis can lead to a variety of diseases, especially the accumulation of Mn in the brain, resulting in toxic side effects. We reviewed the metabolism and distribution of Mn at multiple levels, including organ, cellular, and sub-cell levels. Mitochondria are the main sites of Mn metabolism and energy conversion in cells. Enhanced Mn superoxide dismutase activity reduces mitochondrial oxidative stress and inhibits cancer development. In addition, Mn enhances anticancer immune responses through the cGAS-STING pathway. We introduced various delivery vectors for Mn delivery to cancer sites for Mn supplementation and anti-cancer immunity. This review aims to provide new research perspectives for the application of Mn in the prevention and treatment of human diseases, especially by enhancing anticancer immune responses to inhibit cancer progression.
期刊介绍:
Nutrition Research Reviews offers a comprehensive overview of nutritional science today. By distilling the latest research and linking it to established practice, the journal consistently delivers the widest range of in-depth articles in the field of nutritional science. It presents up-to-date, critical reviews of key topics in nutrition science advancing new concepts and hypotheses that encourage the exchange of fundamental ideas on nutritional well-being in both humans and animals.