自插层Cr1+δTe2非单调体反演对称性破缺设计非平凡实空间Berry曲率。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-03-24 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202500028
Seungwon Rho, Dameul Jeong, Hyeong-Ryul Kim, Jaeseok Huh, Hyeong-Jun Son, Young-Kyun Kwon, Mann-Ho Cho
{"title":"自插层Cr1+δTe2非单调体反演对称性破缺设计非平凡实空间Berry曲率。","authors":"Seungwon Rho, Dameul Jeong, Hyeong-Ryul Kim, Jaeseok Huh, Hyeong-Jun Son, Young-Kyun Kwon, Mann-Ho Cho","doi":"10.1002/smsc.202500028","DOIUrl":null,"url":null,"abstract":"<p><p>The real-space Berry curvature ( <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> ) in magnetic materials has gained significant attention for its potential applications in chiral spintronic devices. <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> manifests in chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction (DMI), which arises in inversion-asymmetric systems. Herein, the topological Hall effect (THE) in 2D ferromagnet Cr<sub>1+δ</sub>Te<sub>2</sub> as a function of the Cr intercalant (<i>δ</i>) is investigated. A nonlinear dependence of the THE amplitude induced by <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> on <i>δ</i> is identified, originating from non-monotonic bulk inversion symmetry breaking via Cr self-intercalation. Density-functional theory calculations further reveal a strong correlation between THE amplitude and bulk DMI strength (<i>E</i> <sub>DMI</sub>), demonstrating both the mechanism of THE and the tunability of <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> in Cr<sub>1+δ</sub>Te<sub>2</sub>. Remarkably, Cr<sub>1.612</sub>Te<sub>2</sub> exhibits the largest THE amplitude observed to date (2.75 μΩ⋅cm) in the Cr<sub>1+δ</sub>Te<sub>2</sub> family, which is a strong candidate for the highest THE amplitude, given its magnetic anisotropy and <i>E</i> <sub>DMI</sub>. Overall, by confirming the critical role of bulk DMI and magnetic anisotropy in engineering <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> , the most efficient strategy for designing <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> in 2D ferromagnetic materials through atomic-scale self-intercalation is proposed. These findings provide fundamental insights into the relationship between <i>E</i> <sub>DMI</sub> and THE in Cr<sub>1+δ</sub>Te<sub>2</sub> and offer a promising approach for designing high-performance chiral spintronic devices.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2500028"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168622/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing Nontrivial Real-Space Berry Curvature through Non-Monotonic Bulk Inversion Symmetry Breaking in Self-Intercalated Cr<sub>1+δ</sub>Te<sub>2</sub>.\",\"authors\":\"Seungwon Rho, Dameul Jeong, Hyeong-Ryul Kim, Jaeseok Huh, Hyeong-Jun Son, Young-Kyun Kwon, Mann-Ho Cho\",\"doi\":\"10.1002/smsc.202500028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The real-space Berry curvature ( <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> ) in magnetic materials has gained significant attention for its potential applications in chiral spintronic devices. <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> manifests in chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction (DMI), which arises in inversion-asymmetric systems. Herein, the topological Hall effect (THE) in 2D ferromagnet Cr<sub>1+δ</sub>Te<sub>2</sub> as a function of the Cr intercalant (<i>δ</i>) is investigated. A nonlinear dependence of the THE amplitude induced by <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> on <i>δ</i> is identified, originating from non-monotonic bulk inversion symmetry breaking via Cr self-intercalation. Density-functional theory calculations further reveal a strong correlation between THE amplitude and bulk DMI strength (<i>E</i> <sub>DMI</sub>), demonstrating both the mechanism of THE and the tunability of <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> in Cr<sub>1+δ</sub>Te<sub>2</sub>. Remarkably, Cr<sub>1.612</sub>Te<sub>2</sub> exhibits the largest THE amplitude observed to date (2.75 μΩ⋅cm) in the Cr<sub>1+δ</sub>Te<sub>2</sub> family, which is a strong candidate for the highest THE amplitude, given its magnetic anisotropy and <i>E</i> <sub>DMI</sub>. Overall, by confirming the critical role of bulk DMI and magnetic anisotropy in engineering <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> , the most efficient strategy for designing <math> <mrow> <mrow><msub><mi>Ω</mi> <mi>r</mi></msub> </mrow> </mrow> </math> in 2D ferromagnetic materials through atomic-scale self-intercalation is proposed. These findings provide fundamental insights into the relationship between <i>E</i> <sub>DMI</sub> and THE in Cr<sub>1+δ</sub>Te<sub>2</sub> and offer a promising approach for designing high-performance chiral spintronic devices.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 6\",\"pages\":\"2500028\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168622/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性材料中的实空间Berry曲率(Ω r)因其在手性自旋电子器件中的潜在应用而受到广泛关注。Ω r表现在由Dzyaloshinskii-Moriya相互作用(DMI)稳定的手性自旋织构中,这种织构出现在反转-不对称体系中。本文研究了二维铁磁体Cr1+δ te2的拓扑霍尔效应(the)随Cr插层剂δ的变化规律。通过Cr自插层引起的非单调体反演对称性破缺,确定了Ω r诱导的振幅对δ的非线性依赖关系。密度泛函理论计算进一步揭示了THE振幅与体DMI强度(E DMI)之间的强相关性,证明了THE的机制和Ω r在Cr1+δTe2中的可调性。值得注意的是,Cr1.612Te2在Cr1+δTe2族中表现出迄今为止观测到的最大振幅(2.75 μΩ⋅cm),考虑到其磁各向异性和E DMI,它是最高振幅的有力候选者。总体而言,通过确认块体DMI和磁各向异性在工程Ω r中的关键作用,提出了通过原子尺度自插层在二维铁磁材料中设计Ω r的最有效策略。这些发现为研究E - DMI与Cr1+δTe2中的the之间的关系提供了基础见解,并为设计高性能手性自旋电子器件提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Nontrivial Real-Space Berry Curvature through Non-Monotonic Bulk Inversion Symmetry Breaking in Self-Intercalated Cr1+δTe2.

The real-space Berry curvature ( Ω r ) in magnetic materials has gained significant attention for its potential applications in chiral spintronic devices. Ω r manifests in chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction (DMI), which arises in inversion-asymmetric systems. Herein, the topological Hall effect (THE) in 2D ferromagnet Cr1+δTe2 as a function of the Cr intercalant (δ) is investigated. A nonlinear dependence of the THE amplitude induced by Ω r on δ is identified, originating from non-monotonic bulk inversion symmetry breaking via Cr self-intercalation. Density-functional theory calculations further reveal a strong correlation between THE amplitude and bulk DMI strength (E DMI), demonstrating both the mechanism of THE and the tunability of Ω r in Cr1+δTe2. Remarkably, Cr1.612Te2 exhibits the largest THE amplitude observed to date (2.75 μΩ⋅cm) in the Cr1+δTe2 family, which is a strong candidate for the highest THE amplitude, given its magnetic anisotropy and E DMI. Overall, by confirming the critical role of bulk DMI and magnetic anisotropy in engineering Ω r , the most efficient strategy for designing Ω r in 2D ferromagnetic materials through atomic-scale self-intercalation is proposed. These findings provide fundamental insights into the relationship between E DMI and THE in Cr1+δTe2 and offer a promising approach for designing high-performance chiral spintronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信