利用化学气相蚀刻技术制造高度有序、水平排列的亚5纳米硅纳米线。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-02-28 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400627
Juyeon Seo, Peiyun Feng, Jianlin Li, Sanghyun Hong, Sen Gao, Ji Young Byun, Yung Joon Jung
{"title":"利用化学气相蚀刻技术制造高度有序、水平排列的亚5纳米硅纳米线。","authors":"Juyeon Seo, Peiyun Feng, Jianlin Li, Sanghyun Hong, Sen Gao, Ji Young Byun, Yung Joon Jung","doi":"10.1002/smsc.202400627","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, the scalable fabrication of hierarchical silicon structures featuring high-density, horizontally super-aligned sub-5 nm silicon nanowires (SiNWs), is reported. These unprecedented, highly organized silicon architectures with tunable sizes and densities are fabricated using straightforward micro-patterned SiO<sub>2</sub>/Si templates followed by a chemical vaporetching process. In time-resolved structural analysis, it is revealed that rapid, aggressive etching is crucial for creating an inhomogeneous spatial distribution of vapor etchants, inducing surface defects acting as preferential sites for localized anisotropic silicon etching along <111> direction. The efficacy of this unique structure is demonstrated as a single-molecule detectable surface-enhanced Raman scattering sensor, incorporating sub-10 nm silver plasmonic nanoparticles. Its distinct structural features-marked by quantum-confined dimensions, ultrahigh surface area, dual-scale roughness, and exceptional uniformity-enable significant enhancement of optical response and detection sensitivity down to 10<sup>-11</sup>  m. These highly controlled sub-5 nm SiNW architecture can broaden the applications of quantum nanowires in chemical and bio-sensing and other emerging technologies.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400627"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168600/pdf/","citationCount":"0","resultStr":"{\"title\":\"Scalable Fabrication of Highly Organized, Horizontally Aligned Sub-5 nm Silicon Nanowires via Chemical Vapor Etching.\",\"authors\":\"Juyeon Seo, Peiyun Feng, Jianlin Li, Sanghyun Hong, Sen Gao, Ji Young Byun, Yung Joon Jung\",\"doi\":\"10.1002/smsc.202400627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein, the scalable fabrication of hierarchical silicon structures featuring high-density, horizontally super-aligned sub-5 nm silicon nanowires (SiNWs), is reported. These unprecedented, highly organized silicon architectures with tunable sizes and densities are fabricated using straightforward micro-patterned SiO<sub>2</sub>/Si templates followed by a chemical vaporetching process. In time-resolved structural analysis, it is revealed that rapid, aggressive etching is crucial for creating an inhomogeneous spatial distribution of vapor etchants, inducing surface defects acting as preferential sites for localized anisotropic silicon etching along <111> direction. The efficacy of this unique structure is demonstrated as a single-molecule detectable surface-enhanced Raman scattering sensor, incorporating sub-10 nm silver plasmonic nanoparticles. Its distinct structural features-marked by quantum-confined dimensions, ultrahigh surface area, dual-scale roughness, and exceptional uniformity-enable significant enhancement of optical response and detection sensitivity down to 10<sup>-11</sup>  m. These highly controlled sub-5 nm SiNW architecture can broaden the applications of quantum nanowires in chemical and bio-sensing and other emerging technologies.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 6\",\"pages\":\"2400627\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了以高密度、水平超排列的亚5纳米硅纳米线(SiNWs)为特征的分层硅结构的可扩展制造。这些前所未有的、高度组织化的硅结构具有可调的尺寸和密度,是使用直接的微图案SiO2/Si模板和化学蒸发工艺制造的。在时间分辨结构分析中,揭示了快速侵蚀蚀刻对于产生非均匀空间分布的汽蚀剂至关重要,从而诱导表面缺陷作为沿方向局部各向异性硅蚀刻的优先位置。这种独特结构的有效性被证明是一个单分子可检测的表面增强拉曼散射传感器,包含亚10纳米银等离子体纳米粒子。其独特的结构特征-以量子受限尺寸,超高表面积,双尺度粗糙度和卓越的均匀性为标志-使光学响应和检测灵敏度显著增强,低至10-11 m。这些高度可控的5 nm以下SiNW结构可以扩大量子纳米线在化学和生物传感以及其他新兴技术中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Fabrication of Highly Organized, Horizontally Aligned Sub-5 nm Silicon Nanowires via Chemical Vapor Etching.

Herein, the scalable fabrication of hierarchical silicon structures featuring high-density, horizontally super-aligned sub-5 nm silicon nanowires (SiNWs), is reported. These unprecedented, highly organized silicon architectures with tunable sizes and densities are fabricated using straightforward micro-patterned SiO2/Si templates followed by a chemical vaporetching process. In time-resolved structural analysis, it is revealed that rapid, aggressive etching is crucial for creating an inhomogeneous spatial distribution of vapor etchants, inducing surface defects acting as preferential sites for localized anisotropic silicon etching along <111> direction. The efficacy of this unique structure is demonstrated as a single-molecule detectable surface-enhanced Raman scattering sensor, incorporating sub-10 nm silver plasmonic nanoparticles. Its distinct structural features-marked by quantum-confined dimensions, ultrahigh surface area, dual-scale roughness, and exceptional uniformity-enable significant enhancement of optical response and detection sensitivity down to 10-11  m. These highly controlled sub-5 nm SiNW architecture can broaden the applications of quantum nanowires in chemical and bio-sensing and other emerging technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信