用于微等离子体照明器件的增强场电子发射性能的激光诱导石墨烯-硼掺杂金刚石纳米壁杂化纳米结构。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-04-21 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400430
Mohsen Khodadadiyazdi, Mateusz Ficek, Maria Brzhezinskaya, Shradha Suman, Salila Kumar Sethy, Kamatchi Jothiramalingam Sankaran, Bartłomiej Dec, Mattia Pierpaoli, Sujit Deshmukh, Miroslaw Sawczak, William A Goddard, Robert Bogdanowicz
{"title":"用于微等离子体照明器件的增强场电子发射性能的激光诱导石墨烯-硼掺杂金刚石纳米壁杂化纳米结构。","authors":"Mohsen Khodadadiyazdi, Mateusz Ficek, Maria Brzhezinskaya, Shradha Suman, Salila Kumar Sethy, Kamatchi Jothiramalingam Sankaran, Bartłomiej Dec, Mattia Pierpaoli, Sujit Deshmukh, Miroslaw Sawczak, William A Goddard, Robert Bogdanowicz","doi":"10.1002/smsc.202400430","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation introduces a scalable fabrication method for laser-induced graphene (LIG)-boron-doped diamond nanowall (BDNW) hybrid nanostructures, designed for field electron emission (FEE) cathode materials in microplasma illumination (μPI) devices. The two-step process involves fabricating BDNWs via microwave plasma-enhanced chemical vapor deposition, followed by drop-casting BDNW dispersion onto polyimide foils to create LIG-BDNW hybrid nanostructures. Topographic studies reveal that BDNWs on LIG boosts surface area and prevent graphene restacking. High-resolution transmission electron microscopy confirms precise BDNW decoration, creating sharp edges and high porosity. The effects of boron and nitrogen dopants, highlighted by Raman spectroscopy, are corroborated by near-edge X-ray absorption fire structure and X-ray photoelectron spectroscopies. The hybrid nanostructures exhibit high electrical conductivity and superior FEE properties, with a low turn-on field of 2.9 V μm<sup>-1</sup>, a large FEE current density of 3.0 mA cm<sup>-2</sup> at an applied field of 7.9 V μm<sup>-1</sup>, and a field-enhancement factor of 5,480. The hybrid nanostructures demonstrate an exceptionally low breakdown voltage of 320 V and a plasma current density of 9.48 mA cm<sup>-1</sup> at an applied voltage of 550 V. Ab-initio calculations of the electronic structure further support the experimental findings of these diamond-graphene hybrids, underscoring their potential in advanced electronic applications.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400430"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Laser-Induced Graphene-Boron-Doped Diamond Nanowall Hybrid Nanostructures with Enhanced Field Electron Emission Performance for Microplasma Illumination Devices.\",\"authors\":\"Mohsen Khodadadiyazdi, Mateusz Ficek, Maria Brzhezinskaya, Shradha Suman, Salila Kumar Sethy, Kamatchi Jothiramalingam Sankaran, Bartłomiej Dec, Mattia Pierpaoli, Sujit Deshmukh, Miroslaw Sawczak, William A Goddard, Robert Bogdanowicz\",\"doi\":\"10.1002/smsc.202400430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation introduces a scalable fabrication method for laser-induced graphene (LIG)-boron-doped diamond nanowall (BDNW) hybrid nanostructures, designed for field electron emission (FEE) cathode materials in microplasma illumination (μPI) devices. The two-step process involves fabricating BDNWs via microwave plasma-enhanced chemical vapor deposition, followed by drop-casting BDNW dispersion onto polyimide foils to create LIG-BDNW hybrid nanostructures. Topographic studies reveal that BDNWs on LIG boosts surface area and prevent graphene restacking. High-resolution transmission electron microscopy confirms precise BDNW decoration, creating sharp edges and high porosity. The effects of boron and nitrogen dopants, highlighted by Raman spectroscopy, are corroborated by near-edge X-ray absorption fire structure and X-ray photoelectron spectroscopies. The hybrid nanostructures exhibit high electrical conductivity and superior FEE properties, with a low turn-on field of 2.9 V μm<sup>-1</sup>, a large FEE current density of 3.0 mA cm<sup>-2</sup> at an applied field of 7.9 V μm<sup>-1</sup>, and a field-enhancement factor of 5,480. The hybrid nanostructures demonstrate an exceptionally low breakdown voltage of 320 V and a plasma current density of 9.48 mA cm<sup>-1</sup> at an applied voltage of 550 V. Ab-initio calculations of the electronic structure further support the experimental findings of these diamond-graphene hybrids, underscoring their potential in advanced electronic applications.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 6\",\"pages\":\"2400430\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种可扩展的激光诱导石墨烯(LIG)-掺杂硼的金刚石纳米壁(BDNW)混合纳米结构的制备方法,该纳米结构设计用于微等离子体照明(μPI)器件中的场电子发射(FEE)阴极材料。该工艺分为两步,首先通过微波等离子体增强化学气相沉积制备BDNW,然后将BDNW分散体滴铸到聚酰亚胺箔上,从而形成li -BDNW混合纳米结构。地形学研究表明,LIG上的bdnw增加了表面面积,防止了石墨烯的堆积。高分辨率透射电子显微镜证实了精确的BDNW装饰,创造了锋利的边缘和高孔隙率。通过近边x射线吸收火焰结构和x射线光电子能谱证实了硼和氮掺杂的影响。杂化纳米结构具有较高的导电性和优异的FEE性能,其导通场低至2.9 V μm-1,在7.9 V μm-1的电场下,FEE电流密度高达3.0 mA cm-2,场增强因子为5,480。在550v电压下,混合纳米结构的击穿电压极低,为320 V,等离子体电流密度为9.48 mA cm-1。电子结构的从头算进一步支持了这些金刚石-石墨烯杂化物的实验发现,强调了它们在先进电子应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Laser-Induced Graphene-Boron-Doped Diamond Nanowall Hybrid Nanostructures with Enhanced Field Electron Emission Performance for Microplasma Illumination Devices.

Robust Laser-Induced Graphene-Boron-Doped Diamond Nanowall Hybrid Nanostructures with Enhanced Field Electron Emission Performance for Microplasma Illumination Devices.

Robust Laser-Induced Graphene-Boron-Doped Diamond Nanowall Hybrid Nanostructures with Enhanced Field Electron Emission Performance for Microplasma Illumination Devices.

Robust Laser-Induced Graphene-Boron-Doped Diamond Nanowall Hybrid Nanostructures with Enhanced Field Electron Emission Performance for Microplasma Illumination Devices.

This investigation introduces a scalable fabrication method for laser-induced graphene (LIG)-boron-doped diamond nanowall (BDNW) hybrid nanostructures, designed for field electron emission (FEE) cathode materials in microplasma illumination (μPI) devices. The two-step process involves fabricating BDNWs via microwave plasma-enhanced chemical vapor deposition, followed by drop-casting BDNW dispersion onto polyimide foils to create LIG-BDNW hybrid nanostructures. Topographic studies reveal that BDNWs on LIG boosts surface area and prevent graphene restacking. High-resolution transmission electron microscopy confirms precise BDNW decoration, creating sharp edges and high porosity. The effects of boron and nitrogen dopants, highlighted by Raman spectroscopy, are corroborated by near-edge X-ray absorption fire structure and X-ray photoelectron spectroscopies. The hybrid nanostructures exhibit high electrical conductivity and superior FEE properties, with a low turn-on field of 2.9 V μm-1, a large FEE current density of 3.0 mA cm-2 at an applied field of 7.9 V μm-1, and a field-enhancement factor of 5,480. The hybrid nanostructures demonstrate an exceptionally low breakdown voltage of 320 V and a plasma current density of 9.48 mA cm-1 at an applied voltage of 550 V. Ab-initio calculations of the electronic structure further support the experimental findings of these diamond-graphene hybrids, underscoring their potential in advanced electronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信