天然和工程细胞外囊泡治疗急性肺损伤和急性呼吸窘迫综合征。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-02-26 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400606
Zhengyan Gu, Wenjun Xue, Guanchao Mao, Zhipeng Pei, Jingjing Li, Mingxue Sun, Xinkang Zhang, Shanshan Zhang, Songling Li, Jinfeng Cen, Kai Xiao, Ying Lu, Qingqiang Xu
{"title":"天然和工程细胞外囊泡治疗急性肺损伤和急性呼吸窘迫综合征。","authors":"Zhengyan Gu, Wenjun Xue, Guanchao Mao, Zhipeng Pei, Jingjing Li, Mingxue Sun, Xinkang Zhang, Shanshan Zhang, Songling Li, Jinfeng Cen, Kai Xiao, Ying Lu, Qingqiang Xu","doi":"10.1002/smsc.202400606","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are lipid bilayer nanoparticles naturally released from cells, playing a crucial role in intercellular communication. They modulate gene expression and regulate physiological and pathological processes, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Research has shown that EVs contain a variety of active components, are biocompatible and small in size, and do not trigger immune rejection, making the infusion of exogenous EVs a promising therapeutic tool. With further research, engineering strategies have been proposed to enhance the clinical potential of EVs. These strategies involve modifying either donor cells that secrete EVs or the EVs themselves and can be engineered to circumvent the limitations of native EVs. In this review, an overview of the biological properties of native EVs is provided and the current therapeutic potential of native and engineered EVs in treating ALI/ARDS, along with the latest research findings, is summarized. The challenges and opportunities for clinical translation of EVs as a novel therapeutic tool are also discussed, offering new insights into the treatment of ALI/ARDS using EV engineering technology.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400606"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168619/pdf/","citationCount":"0","resultStr":"{\"title\":\"Native and Engineered Extracellular Vesicles for the Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome.\",\"authors\":\"Zhengyan Gu, Wenjun Xue, Guanchao Mao, Zhipeng Pei, Jingjing Li, Mingxue Sun, Xinkang Zhang, Shanshan Zhang, Songling Li, Jinfeng Cen, Kai Xiao, Ying Lu, Qingqiang Xu\",\"doi\":\"10.1002/smsc.202400606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles (EVs) are lipid bilayer nanoparticles naturally released from cells, playing a crucial role in intercellular communication. They modulate gene expression and regulate physiological and pathological processes, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Research has shown that EVs contain a variety of active components, are biocompatible and small in size, and do not trigger immune rejection, making the infusion of exogenous EVs a promising therapeutic tool. With further research, engineering strategies have been proposed to enhance the clinical potential of EVs. These strategies involve modifying either donor cells that secrete EVs or the EVs themselves and can be engineered to circumvent the limitations of native EVs. In this review, an overview of the biological properties of native EVs is provided and the current therapeutic potential of native and engineered EVs in treating ALI/ARDS, along with the latest research findings, is summarized. The challenges and opportunities for clinical translation of EVs as a novel therapeutic tool are also discussed, offering new insights into the treatment of ALI/ARDS using EV engineering technology.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 6\",\"pages\":\"2400606\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168619/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)是细胞自然释放的脂质双分子层纳米颗粒,在细胞间通讯中起着至关重要的作用。它们调节基因表达并调节生理和病理过程,包括急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)。研究表明,外源性ev含有多种活性成分,具有生物相容性,体积小,不会引发免疫排斥反应,这使得外源性ev输注成为一种很有前景的治疗工具。随着研究的深入,提出了提高电动汽车临床潜力的工程策略。这些策略包括修改分泌电动汽车的供体细胞或电动汽车本身,并且可以设计以绕过天然电动汽车的限制。本文综述了天然ev的生物学特性,以及目前天然ev和工程化ev在治疗ALI/ARDS中的治疗潜力,以及最新的研究成果。本文还讨论了电动汽车作为一种新型治疗工具的临床翻译所面临的挑战和机遇,为利用电动汽车工程技术治疗ALI/ARDS提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Native and Engineered Extracellular Vesicles for the Treatment of Acute Lung Injury and Acute Respiratory Distress Syndrome.

Extracellular vesicles (EVs) are lipid bilayer nanoparticles naturally released from cells, playing a crucial role in intercellular communication. They modulate gene expression and regulate physiological and pathological processes, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Research has shown that EVs contain a variety of active components, are biocompatible and small in size, and do not trigger immune rejection, making the infusion of exogenous EVs a promising therapeutic tool. With further research, engineering strategies have been proposed to enhance the clinical potential of EVs. These strategies involve modifying either donor cells that secrete EVs or the EVs themselves and can be engineered to circumvent the limitations of native EVs. In this review, an overview of the biological properties of native EVs is provided and the current therapeutic potential of native and engineered EVs in treating ALI/ARDS, along with the latest research findings, is summarized. The challenges and opportunities for clinical translation of EVs as a novel therapeutic tool are also discussed, offering new insights into the treatment of ALI/ARDS using EV engineering technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信