Ying Li, Ziyu Song, Sumei Xu, Ke Xu, Wangda Xu, Li Xu, Fengyuan Tian
{"title":"人参皂苷化合物K通过胆汁酸受体/YAP信号减轻狼疮肾炎足细胞损伤的线粒体分裂","authors":"Ying Li, Ziyu Song, Sumei Xu, Ke Xu, Wangda Xu, Li Xu, Fengyuan Tian","doi":"10.1002/ptr.8492","DOIUrl":null,"url":null,"abstract":"<p><p>Irreversible renal damage in lupus nephritis (LN) results from critical podocyte injury. Disruption in the actin cytoskeleton initiates mitochondrial fission to exacerbate podocyte injury. While ginsenoside compound K (CK) alleviates podocyte injury in lupus-prone mice, its mechanism in regulating mitochondrial dynamics underlying remains elusive. Based on the open-source single-cell RNA sequencing dataset, this study clarified CK's role in alleviating podocyte injury in MRL/lpr mice by regulating cytoskeleton-mediated mitochondrial fission and elucidated the molecular mechanisms underlying the BA receptor-YAP axis. MRL/lpr mice were administered CK (20 or 40 mg/kg) for 10 weeks. Renal function and pathological changes were evaluated, along with renal metabolite profiles and metabolomics analysis. We analyzed publicly available single-cell RNA sequencing data to specifically profile gene mapping and enrichment analysis during immune-mediated renal injury. Furthermore, podocyte-based in vitro assays were conducted to investigate the impact of the BA receptors-YAP axis on mitochondrial dynamics. CK effectively cleared anti-dsDNA antibodies, attenuated systemic inflammation, and improved renal function through resolving immune complex deposition. Mechanistically, CK restored actin cytoskeleton integrity via Rho GTPase regulation and reshaped BA metabolism to activate TGR5/FXR receptors in podocytes. This dual action suppressed DRP1 s616 phosphorylation, inhibiting excessive mitochondrial fission, regulating while enhancing TFAM-mediated mtDNA replication for mitochondrial homeostasis. Concurrently, CK attenuated podocyte apoptosis through Hippo signaling inhibition and YAP activation. In conclusion, CK ameliorates podocyte injury by preventing excessive mitochondrial fission through the BA receptors-YAP axis, thus providing a potential therapy for LN.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Compound K Mitigates Mitochondrial Fission Through Bile Acid Receptors/YAP Signaling to Counteract Podocyte Injury in Lupus Nephritis.\",\"authors\":\"Ying Li, Ziyu Song, Sumei Xu, Ke Xu, Wangda Xu, Li Xu, Fengyuan Tian\",\"doi\":\"10.1002/ptr.8492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irreversible renal damage in lupus nephritis (LN) results from critical podocyte injury. Disruption in the actin cytoskeleton initiates mitochondrial fission to exacerbate podocyte injury. While ginsenoside compound K (CK) alleviates podocyte injury in lupus-prone mice, its mechanism in regulating mitochondrial dynamics underlying remains elusive. Based on the open-source single-cell RNA sequencing dataset, this study clarified CK's role in alleviating podocyte injury in MRL/lpr mice by regulating cytoskeleton-mediated mitochondrial fission and elucidated the molecular mechanisms underlying the BA receptor-YAP axis. MRL/lpr mice were administered CK (20 or 40 mg/kg) for 10 weeks. Renal function and pathological changes were evaluated, along with renal metabolite profiles and metabolomics analysis. We analyzed publicly available single-cell RNA sequencing data to specifically profile gene mapping and enrichment analysis during immune-mediated renal injury. Furthermore, podocyte-based in vitro assays were conducted to investigate the impact of the BA receptors-YAP axis on mitochondrial dynamics. CK effectively cleared anti-dsDNA antibodies, attenuated systemic inflammation, and improved renal function through resolving immune complex deposition. Mechanistically, CK restored actin cytoskeleton integrity via Rho GTPase regulation and reshaped BA metabolism to activate TGR5/FXR receptors in podocytes. This dual action suppressed DRP1 s616 phosphorylation, inhibiting excessive mitochondrial fission, regulating while enhancing TFAM-mediated mtDNA replication for mitochondrial homeostasis. Concurrently, CK attenuated podocyte apoptosis through Hippo signaling inhibition and YAP activation. In conclusion, CK ameliorates podocyte injury by preventing excessive mitochondrial fission through the BA receptors-YAP axis, thus providing a potential therapy for LN.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8492\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ginsenoside Compound K Mitigates Mitochondrial Fission Through Bile Acid Receptors/YAP Signaling to Counteract Podocyte Injury in Lupus Nephritis.
Irreversible renal damage in lupus nephritis (LN) results from critical podocyte injury. Disruption in the actin cytoskeleton initiates mitochondrial fission to exacerbate podocyte injury. While ginsenoside compound K (CK) alleviates podocyte injury in lupus-prone mice, its mechanism in regulating mitochondrial dynamics underlying remains elusive. Based on the open-source single-cell RNA sequencing dataset, this study clarified CK's role in alleviating podocyte injury in MRL/lpr mice by regulating cytoskeleton-mediated mitochondrial fission and elucidated the molecular mechanisms underlying the BA receptor-YAP axis. MRL/lpr mice were administered CK (20 or 40 mg/kg) for 10 weeks. Renal function and pathological changes were evaluated, along with renal metabolite profiles and metabolomics analysis. We analyzed publicly available single-cell RNA sequencing data to specifically profile gene mapping and enrichment analysis during immune-mediated renal injury. Furthermore, podocyte-based in vitro assays were conducted to investigate the impact of the BA receptors-YAP axis on mitochondrial dynamics. CK effectively cleared anti-dsDNA antibodies, attenuated systemic inflammation, and improved renal function through resolving immune complex deposition. Mechanistically, CK restored actin cytoskeleton integrity via Rho GTPase regulation and reshaped BA metabolism to activate TGR5/FXR receptors in podocytes. This dual action suppressed DRP1 s616 phosphorylation, inhibiting excessive mitochondrial fission, regulating while enhancing TFAM-mediated mtDNA replication for mitochondrial homeostasis. Concurrently, CK attenuated podocyte apoptosis through Hippo signaling inhibition and YAP activation. In conclusion, CK ameliorates podocyte injury by preventing excessive mitochondrial fission through the BA receptors-YAP axis, thus providing a potential therapy for LN.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.