{"title":"模式识别受体和炎性体:现在和未来。","authors":"SuHyeon Oh , Young Ki Choi , SangJoon Lee","doi":"10.1016/j.mocell.2025.100239","DOIUrl":null,"url":null,"abstract":"<div><div>Pattern recognition receptors (PRRs) are fundamental to the innate immune system, functioning to detect and eliminate invading pathogens by inhibiting their replication and limiting host tissue damage. Through direct recognition of pathogen-associated molecular patterns and damage-associated molecular patterns, PRRs initiate inflammatory responses, including cytokine production, and modulate the adaptive immune response. Ligand binding activates downstream signaling pathways that promote pathogen clearance and drive inflammasome assembly. Accumulating evidence underscores the critical role of PRRs in sensing cellular damage and preserving homeostasis. Importantly, interactions within PRR networks facilitate the formation of multiple PRR-containing inflammasomes (PANoptosome), enabling coordinated inflammatory cell death under combined pathogen-associated molecular pattern and damage-associated molecular pattern stimulation. A comprehensive understanding of these interconnected signaling networks is essential for elucidating the regulation of innate immunity and its implications for disease pathogenesis, particularly in the context of infection and inflammation. This review provides a detailed overview of PRR-ligand recognition, downstream signaling mechanisms, and inflammasome activation, and discusses emerging insights into PRR regulation that hold promise for novel immunotherapeutic interventions.</div></div>","PeriodicalId":18795,"journal":{"name":"Molecules and Cells","volume":"48 8","pages":"Article 100239"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern recognition receptors and inflammasome: Now and beyond\",\"authors\":\"SuHyeon Oh , Young Ki Choi , SangJoon Lee\",\"doi\":\"10.1016/j.mocell.2025.100239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pattern recognition receptors (PRRs) are fundamental to the innate immune system, functioning to detect and eliminate invading pathogens by inhibiting their replication and limiting host tissue damage. Through direct recognition of pathogen-associated molecular patterns and damage-associated molecular patterns, PRRs initiate inflammatory responses, including cytokine production, and modulate the adaptive immune response. Ligand binding activates downstream signaling pathways that promote pathogen clearance and drive inflammasome assembly. Accumulating evidence underscores the critical role of PRRs in sensing cellular damage and preserving homeostasis. Importantly, interactions within PRR networks facilitate the formation of multiple PRR-containing inflammasomes (PANoptosome), enabling coordinated inflammatory cell death under combined pathogen-associated molecular pattern and damage-associated molecular pattern stimulation. A comprehensive understanding of these interconnected signaling networks is essential for elucidating the regulation of innate immunity and its implications for disease pathogenesis, particularly in the context of infection and inflammation. This review provides a detailed overview of PRR-ligand recognition, downstream signaling mechanisms, and inflammasome activation, and discusses emerging insights into PRR regulation that hold promise for novel immunotherapeutic interventions.</div></div>\",\"PeriodicalId\":18795,\"journal\":{\"name\":\"Molecules and Cells\",\"volume\":\"48 8\",\"pages\":\"Article 100239\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules and Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1016847825000639\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules and Cells","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1016847825000639","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pattern recognition receptors and inflammasome: Now and beyond
Pattern recognition receptors (PRRs) are fundamental to the innate immune system, functioning to detect and eliminate invading pathogens by inhibiting their replication and limiting host tissue damage. Through direct recognition of pathogen-associated molecular patterns and damage-associated molecular patterns, PRRs initiate inflammatory responses, including cytokine production, and modulate the adaptive immune response. Ligand binding activates downstream signaling pathways that promote pathogen clearance and drive inflammasome assembly. Accumulating evidence underscores the critical role of PRRs in sensing cellular damage and preserving homeostasis. Importantly, interactions within PRR networks facilitate the formation of multiple PRR-containing inflammasomes (PANoptosome), enabling coordinated inflammatory cell death under combined pathogen-associated molecular pattern and damage-associated molecular pattern stimulation. A comprehensive understanding of these interconnected signaling networks is essential for elucidating the regulation of innate immunity and its implications for disease pathogenesis, particularly in the context of infection and inflammation. This review provides a detailed overview of PRR-ligand recognition, downstream signaling mechanisms, and inflammasome activation, and discusses emerging insights into PRR regulation that hold promise for novel immunotherapeutic interventions.
期刊介绍:
Molecules and Cells is an international on-line open-access journal devoted to the advancement and dissemination of fundamental knowledge in molecular and cellular biology. It was launched in 1990 and ISO abbreviation is "Mol. Cells". Reports on a broad range of topics of general interest to molecular and cell biologists are published. It is published on the last day of each month by the Korean Society for Molecular and Cellular Biology.