Jingtian Chen, Shaoyi Lu, Li Zhang, Tamas Insperger, Gabor Stepan
{"title":"参数估计的伴随灵敏度法:在倒立摆和人站立平衡中的应用。","authors":"Jingtian Chen, Shaoyi Lu, Li Zhang, Tamas Insperger, Gabor Stepan","doi":"10.1098/rsif.2024.0843","DOIUrl":null,"url":null,"abstract":"<p><p>The inverted pendulum, a classical mechanical system, often serves as a platform for studying stability and control algorithms. Modelling human standing balance as an inverted pendulum controlled by the time-delayed proportional-derivative (PD) feedback controller can be used effectively to study the related biomechanical mechanisms. In this study, to investigate the human balance control strategy, an adjoint sensitivity analysis method and a corresponding optimizer are implemented to directly determine system parameters, control gains and the time delay in the human balancing model. This study validates the accuracy of the optimizer through numerical simulations and experimental verification based on the physical model of the inverted pendulum on a cart. The experimental results confirm the performance of the identification algorithm for systems involving non-smooth dynamics and inherent time delays. Moreover, the identification based on human balance data indicates that the time-delayed PD feedback controller effectively represents the human balance control strategy. Additionally, the identification reveals a tendency in the control strategy: the control gains are located in the lower-left region of the stability diagram, indicating that the human body tends to adopt an optimal control strategy that minimizes energy consumption.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240843"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adjoint sensitivity method for parameter estimation: applications to inverted pendulum and human standing balance.\",\"authors\":\"Jingtian Chen, Shaoyi Lu, Li Zhang, Tamas Insperger, Gabor Stepan\",\"doi\":\"10.1098/rsif.2024.0843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inverted pendulum, a classical mechanical system, often serves as a platform for studying stability and control algorithms. Modelling human standing balance as an inverted pendulum controlled by the time-delayed proportional-derivative (PD) feedback controller can be used effectively to study the related biomechanical mechanisms. In this study, to investigate the human balance control strategy, an adjoint sensitivity analysis method and a corresponding optimizer are implemented to directly determine system parameters, control gains and the time delay in the human balancing model. This study validates the accuracy of the optimizer through numerical simulations and experimental verification based on the physical model of the inverted pendulum on a cart. The experimental results confirm the performance of the identification algorithm for systems involving non-smooth dynamics and inherent time delays. Moreover, the identification based on human balance data indicates that the time-delayed PD feedback controller effectively represents the human balance control strategy. Additionally, the identification reveals a tendency in the control strategy: the control gains are located in the lower-left region of the stability diagram, indicating that the human body tends to adopt an optimal control strategy that minimizes energy consumption.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 227\",\"pages\":\"20240843\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0843\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0843","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Adjoint sensitivity method for parameter estimation: applications to inverted pendulum and human standing balance.
The inverted pendulum, a classical mechanical system, often serves as a platform for studying stability and control algorithms. Modelling human standing balance as an inverted pendulum controlled by the time-delayed proportional-derivative (PD) feedback controller can be used effectively to study the related biomechanical mechanisms. In this study, to investigate the human balance control strategy, an adjoint sensitivity analysis method and a corresponding optimizer are implemented to directly determine system parameters, control gains and the time delay in the human balancing model. This study validates the accuracy of the optimizer through numerical simulations and experimental verification based on the physical model of the inverted pendulum on a cart. The experimental results confirm the performance of the identification algorithm for systems involving non-smooth dynamics and inherent time delays. Moreover, the identification based on human balance data indicates that the time-delayed PD feedback controller effectively represents the human balance control strategy. Additionally, the identification reveals a tendency in the control strategy: the control gains are located in the lower-left region of the stability diagram, indicating that the human body tends to adopt an optimal control strategy that minimizes energy consumption.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.