{"title":"Pho调控子的作用和亚磷酸依赖大肠杆菌的基因重建。","authors":"Naoki Momokawa, Takeshi Ikeda, Takenori Ishida, Kaori Nimura-Matsune, Hisakage Funabashi, Satoru Watanabe, Akio Kuroda, Ryuichi Hirota","doi":"10.1016/j.jbiosc.2025.05.012","DOIUrl":null,"url":null,"abstract":"<p><p>A phosphite (Pt)-dependent biological containment strategy, achieved by introducing a Pt-metabolic pathway and disrupting endogenous phosphate transporters, renders Escherichia coli growth strictly dependent on Pt, a compound rarely detected in natural environments, thereby preventing unintended environmental spread. In this study, we demonstrated that expression of phosphate regulon (Pho regulon) genes was markedly upregulated in a Pt-dependent E. coli strain due to the elimination of phoU, a negative regulator of the Pho regulon, along with the high-affinity phosphate transporter pstSCAB. However, further genetic modification of this strain for detailed analysis was hindered by the presence of multiple antibiotic resistance markers. To overcome this limitation, we reconstructed a Pt-dependent E. coli strain using CRISPR-Cas12a-mediated genome editing, enabling the removal of the antibiotic resistance markers and facilitating subsequent genetic manipulation. Using this strain, we disrupted the PhoBR two-component regulatory genes and found that deletion of phoBR alleviated the constitutive overexpression of Pho regulon genes and partially restored growth of the Pt-dependent strain. These findings provide mechanistic insights and technical advances for the refinement and practical application of Pt-dependent biocontainment strategy.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":"117-122"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of the Pho regulon and genetic reconstruction of a phosphite-dependent Escherichia coli.\",\"authors\":\"Naoki Momokawa, Takeshi Ikeda, Takenori Ishida, Kaori Nimura-Matsune, Hisakage Funabashi, Satoru Watanabe, Akio Kuroda, Ryuichi Hirota\",\"doi\":\"10.1016/j.jbiosc.2025.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A phosphite (Pt)-dependent biological containment strategy, achieved by introducing a Pt-metabolic pathway and disrupting endogenous phosphate transporters, renders Escherichia coli growth strictly dependent on Pt, a compound rarely detected in natural environments, thereby preventing unintended environmental spread. In this study, we demonstrated that expression of phosphate regulon (Pho regulon) genes was markedly upregulated in a Pt-dependent E. coli strain due to the elimination of phoU, a negative regulator of the Pho regulon, along with the high-affinity phosphate transporter pstSCAB. However, further genetic modification of this strain for detailed analysis was hindered by the presence of multiple antibiotic resistance markers. To overcome this limitation, we reconstructed a Pt-dependent E. coli strain using CRISPR-Cas12a-mediated genome editing, enabling the removal of the antibiotic resistance markers and facilitating subsequent genetic manipulation. Using this strain, we disrupted the PhoBR two-component regulatory genes and found that deletion of phoBR alleviated the constitutive overexpression of Pho regulon genes and partially restored growth of the Pt-dependent strain. These findings provide mechanistic insights and technical advances for the refinement and practical application of Pt-dependent biocontainment strategy.</p>\",\"PeriodicalId\":15199,\"journal\":{\"name\":\"Journal of bioscience and bioengineering\",\"volume\":\" \",\"pages\":\"117-122\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of bioscience and bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbiosc.2025.05.012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.05.012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Role of the Pho regulon and genetic reconstruction of a phosphite-dependent Escherichia coli.
A phosphite (Pt)-dependent biological containment strategy, achieved by introducing a Pt-metabolic pathway and disrupting endogenous phosphate transporters, renders Escherichia coli growth strictly dependent on Pt, a compound rarely detected in natural environments, thereby preventing unintended environmental spread. In this study, we demonstrated that expression of phosphate regulon (Pho regulon) genes was markedly upregulated in a Pt-dependent E. coli strain due to the elimination of phoU, a negative regulator of the Pho regulon, along with the high-affinity phosphate transporter pstSCAB. However, further genetic modification of this strain for detailed analysis was hindered by the presence of multiple antibiotic resistance markers. To overcome this limitation, we reconstructed a Pt-dependent E. coli strain using CRISPR-Cas12a-mediated genome editing, enabling the removal of the antibiotic resistance markers and facilitating subsequent genetic manipulation. Using this strain, we disrupted the PhoBR two-component regulatory genes and found that deletion of phoBR alleviated the constitutive overexpression of Pho regulon genes and partially restored growth of the Pt-dependent strain. These findings provide mechanistic insights and technical advances for the refinement and practical application of Pt-dependent biocontainment strategy.
期刊介绍:
The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.