Min Ai, Yu Liu, Dan Liu, Chengxi Yan, Xia Wang, Xun Chen
{"title":"基于多模态MRI和人工智能预测轻度认知障碍向阿尔茨海默病转化的研究进展。","authors":"Min Ai, Yu Liu, Dan Liu, Chengxi Yan, Xia Wang, Xun Chen","doi":"10.3389/fneur.2025.1596632","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD) has important clinical significance for dementia prevention and improving patient prognosis. Multimodal magnetic resonance imaging (MRI) techniques (including structural MRI, functional MRI, and cerebral perfusion MRI) can yield information on the morphology, structure, and function of the brain from multiple dimensions, providing a key basis for revealing the pathophysiological mechanisms during the conversion from MCI to AD. Artificial intelligence (AI) methods based on deep learning and machine learning, with their powerful data processing and pattern recognition capabilities, have shown great potential in mining the features of multimodal MRI data and constructing prediction models for MCI conversion. Therefore, this paper systematically reviews the research progress of multimodal MRI techniques in capturing brain changes related to MCI conversion, as well as the practical experience of AI algorithms in constructing efficient prediction models, analyses the current technical challenges faced by the research, and discusses future directions, with the goal of providing a scientific reference for the early and accurate prediction of MCI conversion and the formulation of intervention strategies.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1596632"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171368/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research progress in predicting the conversion from mild cognitive impairment to Alzheimer's disease via multimodal MRI and artificial intelligence.\",\"authors\":\"Min Ai, Yu Liu, Dan Liu, Chengxi Yan, Xia Wang, Xun Chen\",\"doi\":\"10.3389/fneur.2025.1596632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD) has important clinical significance for dementia prevention and improving patient prognosis. Multimodal magnetic resonance imaging (MRI) techniques (including structural MRI, functional MRI, and cerebral perfusion MRI) can yield information on the morphology, structure, and function of the brain from multiple dimensions, providing a key basis for revealing the pathophysiological mechanisms during the conversion from MCI to AD. Artificial intelligence (AI) methods based on deep learning and machine learning, with their powerful data processing and pattern recognition capabilities, have shown great potential in mining the features of multimodal MRI data and constructing prediction models for MCI conversion. Therefore, this paper systematically reviews the research progress of multimodal MRI techniques in capturing brain changes related to MCI conversion, as well as the practical experience of AI algorithms in constructing efficient prediction models, analyses the current technical challenges faced by the research, and discusses future directions, with the goal of providing a scientific reference for the early and accurate prediction of MCI conversion and the formulation of intervention strategies.</p>\",\"PeriodicalId\":12575,\"journal\":{\"name\":\"Frontiers in Neurology\",\"volume\":\"16 \",\"pages\":\"1596632\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12171368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fneur.2025.1596632\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1596632","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Research progress in predicting the conversion from mild cognitive impairment to Alzheimer's disease via multimodal MRI and artificial intelligence.
Predicting the transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD) has important clinical significance for dementia prevention and improving patient prognosis. Multimodal magnetic resonance imaging (MRI) techniques (including structural MRI, functional MRI, and cerebral perfusion MRI) can yield information on the morphology, structure, and function of the brain from multiple dimensions, providing a key basis for revealing the pathophysiological mechanisms during the conversion from MCI to AD. Artificial intelligence (AI) methods based on deep learning and machine learning, with their powerful data processing and pattern recognition capabilities, have shown great potential in mining the features of multimodal MRI data and constructing prediction models for MCI conversion. Therefore, this paper systematically reviews the research progress of multimodal MRI techniques in capturing brain changes related to MCI conversion, as well as the practical experience of AI algorithms in constructing efficient prediction models, analyses the current technical challenges faced by the research, and discusses future directions, with the goal of providing a scientific reference for the early and accurate prediction of MCI conversion and the formulation of intervention strategies.
期刊介绍:
The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.