人巨噬细胞M1表型的促炎特性:延长髓过氧化物酶介导的氧化应激。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maria D Yurkanova, Nastasia V Kosheleva, Arina A Teplova, Peter S Timashev, Irina I Vlasova
{"title":"人巨噬细胞M1表型的促炎特性:延长髓过氧化物酶介导的氧化应激。","authors":"Maria D Yurkanova, Nastasia V Kosheleva, Arina A Teplova, Peter S Timashev, Irina I Vlasova","doi":"10.1080/10715762.2025.2519528","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages and neutrophils are the main immune cells of the acute stage of inflammation. Upon their activation, membrane-bound NADPH oxidase produces superoxide anion radical, which is converted to H<sub>2</sub>O<sub>2</sub> by superoxide dismutase (SOD). In this study, we compared the production of hydrogen peroxide by two phenotypes of pro-inflammatory human M1 macrophages and neutrophils activated with phorbol-12-myristate 13-acetate. Macrophages were obtained from blood monocytes (monocyte-derived macrophages (MDM)) differentiated into MDM using GM- or M-CSF growth factors and polarized into the M1 state, receiving GM_M1, M_M1, respectively. The total level of H<sub>2</sub>O<sub>2</sub> production measured in the presence of horseradish peroxidase differed significantly between two types of macrophages. Only GM_M1 macrophages had a level of H<sub>2</sub>O<sub>2</sub> production comparable to neutrophils. GM_M1 appear at the site of inflammation after neutrophils, they continue the work of neutrophils in creating a pro-inflammatory environment: they produce several times more H<sub>2</sub>O<sub>2</sub> and pro-inflammatory cytokines than M_M1, which arrive at inflammatory site later. Upon activation, MDM_M1 formed big blot-like and smaller dense spheroid-like aggregates. Activated neutrophils secrete the enzyme myeloperoxidase (MPO), which synthesizes the very potent oxidant hypochlorous acid (HOCl) only in the presence of H<sub>2</sub>O<sub>2</sub>. Neutrophils are short lived cells, MPO can use H<sub>2</sub>O<sub>2</sub> produced by activated cultured MDM to synthesize HOCl at physiologically relevant concentrations to prolong oxidative stress.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pro-inflammatory properties of M1 phenotypes of human macrophages: prolongation of myeloperoxidase-mediated oxidative stress.\",\"authors\":\"Maria D Yurkanova, Nastasia V Kosheleva, Arina A Teplova, Peter S Timashev, Irina I Vlasova\",\"doi\":\"10.1080/10715762.2025.2519528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages and neutrophils are the main immune cells of the acute stage of inflammation. Upon their activation, membrane-bound NADPH oxidase produces superoxide anion radical, which is converted to H<sub>2</sub>O<sub>2</sub> by superoxide dismutase (SOD). In this study, we compared the production of hydrogen peroxide by two phenotypes of pro-inflammatory human M1 macrophages and neutrophils activated with phorbol-12-myristate 13-acetate. Macrophages were obtained from blood monocytes (monocyte-derived macrophages (MDM)) differentiated into MDM using GM- or M-CSF growth factors and polarized into the M1 state, receiving GM_M1, M_M1, respectively. The total level of H<sub>2</sub>O<sub>2</sub> production measured in the presence of horseradish peroxidase differed significantly between two types of macrophages. Only GM_M1 macrophages had a level of H<sub>2</sub>O<sub>2</sub> production comparable to neutrophils. GM_M1 appear at the site of inflammation after neutrophils, they continue the work of neutrophils in creating a pro-inflammatory environment: they produce several times more H<sub>2</sub>O<sub>2</sub> and pro-inflammatory cytokines than M_M1, which arrive at inflammatory site later. Upon activation, MDM_M1 formed big blot-like and smaller dense spheroid-like aggregates. Activated neutrophils secrete the enzyme myeloperoxidase (MPO), which synthesizes the very potent oxidant hypochlorous acid (HOCl) only in the presence of H<sub>2</sub>O<sub>2</sub>. Neutrophils are short lived cells, MPO can use H<sub>2</sub>O<sub>2</sub> produced by activated cultured MDM to synthesize HOCl at physiologically relevant concentrations to prolong oxidative stress.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2025.2519528\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2519528","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞和中性粒细胞是炎症急性期的主要免疫细胞。当它们被激活时,膜结合的NADPH氧化酶产生超氧阴离子自由基,经超氧化物歧化酶(SOD)转化为H2O2。在这项研究中,我们比较了两种表型的促炎人M1巨噬细胞和被phorpol -12-肉豆酸酯13-醋酸酯激活的中性粒细胞产生过氧化氢的情况。巨噬细胞来源于血液单核细胞(单核细胞来源的巨噬细胞(MDM)),使用GM-或M-CSF生长因子分化为MDM,并极化为M1状态,分别接受GM_M1、M_M1。在辣根过氧化物酶存在的情况下,两种类型的巨噬细胞产生H2O2的总水平有显著差异。只有GM_M1巨噬细胞产生的H2O2水平与中性粒细胞相当。GM_M1在中性粒细胞之后出现在炎症部位,它们继续中性粒细胞创造促炎环境的工作:它们产生的H2O2和促炎细胞因子比M_M1多几倍,后者到达炎症部位较晚。激活后,MDM_M1形成大的斑点状和较小的致密球状聚集体。活化的中性粒细胞分泌髓过氧化物酶(MPO),该酶仅在H2O2存在下合成非常有效的氧化剂次氯酸(HOCl)。中性粒细胞是寿命较短的细胞,MPO可以利用活化培养的MDM产生的H2O2合成生理相关浓度的HOCl来延长氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pro-inflammatory properties of M1 phenotypes of human macrophages: prolongation of myeloperoxidase-mediated oxidative stress.

Macrophages and neutrophils are the main immune cells of the acute stage of inflammation. Upon their activation, membrane-bound NADPH oxidase produces superoxide anion radical, which is converted to H2O2 by superoxide dismutase (SOD). In this study, we compared the production of hydrogen peroxide by two phenotypes of pro-inflammatory human M1 macrophages and neutrophils activated with phorbol-12-myristate 13-acetate. Macrophages were obtained from blood monocytes (monocyte-derived macrophages (MDM)) differentiated into MDM using GM- or M-CSF growth factors and polarized into the M1 state, receiving GM_M1, M_M1, respectively. The total level of H2O2 production measured in the presence of horseradish peroxidase differed significantly between two types of macrophages. Only GM_M1 macrophages had a level of H2O2 production comparable to neutrophils. GM_M1 appear at the site of inflammation after neutrophils, they continue the work of neutrophils in creating a pro-inflammatory environment: they produce several times more H2O2 and pro-inflammatory cytokines than M_M1, which arrive at inflammatory site later. Upon activation, MDM_M1 formed big blot-like and smaller dense spheroid-like aggregates. Activated neutrophils secrete the enzyme myeloperoxidase (MPO), which synthesizes the very potent oxidant hypochlorous acid (HOCl) only in the presence of H2O2. Neutrophils are short lived cells, MPO can use H2O2 produced by activated cultured MDM to synthesize HOCl at physiologically relevant concentrations to prolong oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信